Scale Adaptive Attention Network for Accurate Defect Detection From Metal Parts

被引:0
|
作者
Sun, Zijiao [1 ]
Wang, Xiaohong [2 ]
Luo, Fang [1 ]
Zhang, Zhiliang [1 ]
Li, Yanghui [3 ]
机构
[1] Qingyuan Polytech, Dept Mechatron & Automot Engn, Qingyuan 511500, Peoples R China
[2] Jining Polytech, Dept Automobile Engn, Jining 272000, Peoples R China
[3] Qingyuan Polytech, Dept Informat Technol & Creat Arts, Qingyuan 511500, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Metal part monitoring; defect detection; attention mechanism; feature extraction;
D O I
10.1109/ACCESS.2024.3432660
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Metal component defect detection plays an important role in industrial manufacturing. However, it is a challenging task to detect defects from the metal component surface due to these problems: 1) Some defects are small and appear randomly on the metal component; 2) There is low-intensity contrast between defect areas and surrounding ones. To solve these issues, a Scale Adaptive Attention Network (SAA-Net) is proposed for defect detection from metal parts, where the Interactive Spatial Position Attention (ISPA) module is devised to detect small defects from the metal part surface by modeling the interdependence between pixels; then, the Dual Local-Global Transformer (DLGT) module is designed to distinguish the defect regions from the surrounding normal ones by fusing the overall attributes and key features. Experiments on the MPDD dataset demonstrate the effectiveness of the proposed SAA-Net, achieving the performance of 97.5%, 90.7%, and 96.1% on the pixel AUC, AP, and sPRO, respectively, further assisting in metal part detection in manufacturing.
引用
收藏
页码:131035 / 131043
页数:9
相关论文
共 50 条
  • [1] An Adaptive Defect-Aware Attention Network for Accurate PCB-Defect Detection
    Liu, Xiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [2] Adaptive rotation attention network for accurate defect detection on magnetic tile surface
    Luo, Fang
    Cui, Yuan
    Wang, Xu
    Zhang, Zhiliang
    Liao, Yong
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (09) : 17554 - 17568
  • [3] Multi-scale attention and dilation network for small defect detection *
    Xiang, Xinyuan
    Liu, Meiqin
    Zhang, Senlin
    Wei, Ping
    Chen, Badong
    PATTERN RECOGNITION LETTERS, 2023, 172 : 82 - 88
  • [4] Textile Defect Detection Combining Attention Mechanism and Adaptive Memory Fusion Network
    Deng S.
    Di L.
    Liang J.
    Jiang D.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2022, 35 (06): : 536 - 547
  • [5] Adaptive Dual Attention Fusion Network for RGB-D Surface Defect Detection
    Jiang, Xiaoheng
    Liu, Jingqi
    Yan, Feng
    Lu, Yang
    Jin, Shaohui
    Liu, Hao
    Xu, Mingliang
    PATTERN RECOGNITION AND COMPUTER VISION, PT IX, PRCV 2024, 2025, 15039 : 392 - 406
  • [6] Multi-Scale Attention Deep Neural Network for Fast Accurate Object Detection
    Song, Kaiyou
    Yang, Hua
    Yin, Zhouping
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (10) : 2972 - 2985
  • [7] PHOTOVOLTAIC DEFECT DETECTION BASED ON MULTI-SCALE CODING COMPLEMENTARY ATTENTION NETWORK
    Chen H.
    Yuan L.
    Wang S.
    Zhao S.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (10): : 191 - 197
  • [8] VFSN: a ResNet Multi-scale Fusion Network for Metal Defect Detection
    Zhu Qingbo
    Han, JiaLin
    Shi, Cheng
    Li, Lei
    Dong, Li
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2023, 67 (04)
  • [9] SDDNet: A Fast and Accurate Network for Surface Defect Detection
    Cui, Lisha
    Jiang, Xiaoheng
    Xu, Mingliang
    Li, Wanqing
    Lv, Pei
    Zhou, Bing
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [10] MLSDNet: Multiclass Lightweight SAR Detection Network Based on Adaptive Scale Distribution Attention
    Chang, Hao
    Fu, Xiongjun
    Dong, Jian
    Liu, Jiaang
    Zhou, Zixiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20