Hyperspectral Rock Classification Method Based on Spatial-Spectral Multidimensional Feature Fusion

被引:0
|
作者
Cao, Shixian [1 ]
Wu, Wenyuan [1 ,2 ]
Wang, Xinyu [1 ]
Xie, Shanjuan [1 ,2 ]
机构
[1] Hangzhou Normal Univ, Inst Remote Sensing & Earth Sci, Sch Informat Sci & Technol, Hangzhou 311121, Peoples R China
[2] Hangzhou Normal Univ, Zhejiang Prov Key Lab Urban Wetlands & Reg Change, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral imaging; rock image classification; convolutional neural network; recurrent neural network; space spectral fusion;
D O I
10.3390/min14090923
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The issues of the same material with different spectra and the same spectra for different materials pose challenges in hyperspectral rock classification. This paper proposes a multidimensional feature network based on 2-D convolutional neural networks (2-D CNNs) and recurrent neural networks (RNNs) for achieving deep combined extraction and fusion of spatial information, such as the rock shape and texture, with spectral information. Experiments are conducted on a hyperspectral rock image dataset obtained by scanning 81 common igneous and metamorphic rock samples using the HySpex hyperspectral sensor imaging system to validate the effectiveness of the proposed network model. The results show that the model achieved an overall classification accuracy of 97.925% and an average classification accuracy of 97.956% on this dataset, surpassing the performances of existing models in the field of rock classification.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Semantic and spatial-spectral feature fusion transformer network for the classification of hyperspectral image
    Xie, Erxin
    Chen, Na
    Peng, Jiangtao
    Sun, Weiwei
    Du, Qian
    You, Xinge
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (04) : 1308 - 1322
  • [2] Hyperspectral Spatial-Spectral Feature Classification Based on Adequate Adaptive Segmentation
    Borhani, Mostafa
    Ghassemian, Hassan
    2014 IRANIAN CONFERENCE ON INTELLIGENT SYSTEMS (ICIS), 2014,
  • [3] Spatial-spectral method for classification of hyperspectral images
    Bian, Xiaoyong
    Zhang, Tianxu
    Yan, Luxin
    Zhang, Xiaolong
    Fang, Houzhang
    Liu, Hai
    OPTICS LETTERS, 2013, 38 (06) : 815 - 817
  • [4] Hyperspectral image classification based on hierarchical spatial-spectral fusion network
    Ouyang N.
    Li Z.-F.
    Lin L.-P.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (10): : 2438 - 2446
  • [5] Classification of sample less hyperspectral images based on spatial-spectral fusion
    Chen, Yingkun
    Wang, Min
    2024 5TH INTERNATIONAL CONFERENCE ON GEOLOGY, MAPPING AND REMOTE SENSING, ICGMRS 2024, 2024, : 143 - 146
  • [6] Adaptive Spatial-Spectral Feature Learning for Hyperspectral Image Classification
    Li, Simin
    Zhu, Xueyu
    Liu, Yang
    Bao, Jie
    IEEE ACCESS, 2019, 7 : 61534 - 61547
  • [7] Compressed spatial-spectral feature representation for hyperspectral ground classification
    Zhou Shichao
    Zhao Baojun
    Tang Linbo
    Wang Wenzheng
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7928 - 7931
  • [8] A SUBPIXEL SPATIAL-SPECTRAL FEATURE MINING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Xu, Xiang
    Li, Jun
    Zhang, Yanning
    Li, Shutao
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8476 - 8479
  • [9] HGF Spatial-Spectral Fusion Method for Hyperspectral Images
    Fu, Pingjie
    Zhang, Yuxuan
    Meng, Fei
    Zhang, Wei
    Zhang, Banghua
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [10] Graph-based spatial-spectral feature learning for hyperspectral image classification
    Ahmad, Muhammad
    Khan, Adil Mehmood
    Hussain, Rasheed
    IET IMAGE PROCESSING, 2017, 11 (12) : 1310 - 1316