High entropy Prussian Blue Analogues assisted by reduced graphene oxide for enhancing the lifespan of Sodium-ion batteries

被引:4
|
作者
Wu, Jingfeng [1 ]
Wang, Guiting [1 ]
Li, Kun [1 ]
Guo, Xu [1 ]
Liang, Yongxing [1 ]
Li, Li [1 ]
Wang, Lei [1 ]
Xie, Ying [1 ]
Guo, Chenfeng [1 ]
机构
[1] Heilongjiang Univ, Sch Chem & Mat Sci, Key Lab Funct Inorgan Mat Chem, Minist Educ, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion battery; Reduced graphene oxide; High entropy material; Prussian blue analogues; SUPERIOR RATE CAPABILITY; CATHODE; TEMPERATURE; HEXACYANOFERRATE; STORAGE; ANODE;
D O I
10.1016/j.colsurfa.2024.135099
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In recent years, Prussian blue analogues (PBAs) have been regarded as one of the most promising cathode materials for Sodium-ion batteries (SIBs) due to their open structure, low cost, and high theoretical capacity. However, the problem of capacity degradation caused by phase transitions during the charge/discharge process has so far limited the applicability of PBAs. While the high entropy strategy can alleviate capacity decay induced by phase transitions, challenges such as low conductivity, material aggregation, and severe interface reactions between electrode materials and electrolytes still persist. Therefore, we used a simple and scalable one-step coprecipitation method to grow high entropy Prussian blue analogues (HEPBA) on reduced graphene oxide (rGO) to address these problems. The rGO not only inhibits material agglomeration but also separates the electrolyte from the electrode material to prevent severe interface reactions. Meanwhile, the Warburg impedance is reduced and the Na+ diffusion performance is improved. When high entropy Prussian blue grown on an rGO matrix (HEPBA@rGO) is utilized as the cathode in a half-cell, it exhibits high discharge specific capacity (115.2 mAh g- 1 at 100 mA g- 1), long cycling stability (retaining 84.6 mAh g- 1 after 1000 cycles), and good rate capability (62 mAh g- 1 at 15 C). The full battery with HEPBA@rGO as the cathode and hard carbon as the anode has a high specific discharge capacity (100.12 mAh g- 1 at 100 mA g- 1), good stability (capacity retention rate of 81 % after
引用
收藏
页数:11
相关论文
共 50 条
  • [1] High-entropy selenides derived from Prussian blue analogues as electrode materials for sodium-ion batteries
    Wei, Chunyan
    Li, Chen
    Qu, Dongyang
    Liao, Bokai
    Han, Dongxue
    Sun, Zhong-Hui
    Niu, Li
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 675 : 139 - 149
  • [2] Modification of Prussian blue analogues as high-performance cathodes for sodium-ion batteries
    Huang, Yifan
    Mu, Wenning
    Meng, Junjin
    Bi, Xiaolong
    Lei, Xuefei
    Luo, Shaohua
    CHEMICAL ENGINEERING JOURNAL, 2024, 499
  • [3] Prussian Blue Analogues for Sodium-Ion Batteries: Past, Present, and Future
    Peng, Jian
    Zhang, Wang
    Liu, Qiannan
    Wang, Jiazhao
    Chou, Shulei
    Liu, Huakun
    Dou, Shixue
    ADVANCED MATERIALS, 2022, 34 (15)
  • [4] Recent Advances in Prussian Blue Analogues Materials for Sodium-Ion Batteries
    Wang, Hao
    Deng, Bangwei
    Ge, Wujie
    Chen, Tao
    Qui, Meizhen
    Peng, Gongchang
    PROGRESS IN CHEMISTRY, 2017, 29 (06) : 683 - 694
  • [5] Prussian Blue Analogues for Aqueous Sodium-Ion Batteries: Progress and Commercialization Assessment
    Yao, Hao
    Gao, Yun
    Lin, Xihao
    Zhang, Hang
    Li, Li
    Chou, Shulei
    ADVANCED ENERGY MATERIALS, 2024, 14 (32)
  • [6] Sodium salt assisted room-temperature synthesis of Prussian blue analogues as high-performance cathodes for sodium-ion batteries
    Wang, Qinglin
    Wang, Weilu
    Xing, Zheng
    Wu, Yuchen
    Gao, Xinran
    Nie, Chuanhao
    Cui, Runzhu
    Ju, Zhicheng
    APPLIED SURFACE SCIENCE, 2024, 669
  • [7] Low-Potential Prussian Blue Analogues for Sodium-Ion Batteries: Manganese Hexacyanochromate
    Wheeler, Samuel
    Capone, Isaac
    Day, Sarah
    Tang, Chiu
    Pasta, Mauro
    CHEMISTRY OF MATERIALS, 2019, 31 (07) : 2619 - 2626
  • [8] Vanadium-doped Prussian blue analogues as advanced cathode for sodium-ion batteries
    Xu, Wei
    Li, Yanjiao
    Bao, Peng
    Fu, Xueying
    Chen, Lizhuang
    Chen, Yingying
    Sun, Dongya
    Yang, Hongxun
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2025, 983
  • [9] Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries
    Xie, Bingxing
    Sun, Baoyu
    Gao, Tianyu
    Ma, Yulin
    Yin, Geping
    Zuo, Pengjian
    COORDINATION CHEMISTRY REVIEWS, 2022, 460
  • [10] Low-cost Prussian blue analogues for sodium-ion batteries and other metal-ion batteries
    Huang, Jia-Qi
    Du, Rui
    Zhang, Hang
    Liu, Yang
    Chen, Jian
    Liu, Yi-Jie
    Li, Li
    Peng, Jian
    Qiao, Yun
    Chou, Shu-Lei
    CHEMICAL COMMUNICATIONS, 2023, 59 (61) : 9320 - 9335