Coronary Vessel Segmentation in X-ray Using U-Net

被引:0
|
作者
Anand, H. S. [1 ]
Dhanya, S. [2 ]
Kumar, K. Manoj [2 ]
Anjali, S., V [2 ]
机构
[1] Chinmaya Vishwavidyapeeth, Inst Sci & Technol, Ernakulam, Kerala, India
[2] Muthoot Inst Technol & Sci, Ernakulam, Kerala, India
关键词
Cardiovascular disease; Coronary artery segmentation; U-Net architecture;
D O I
10.1007/978-981-97-2082-8_5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cardiovascular disease remains a significant global health concern, causing substantial morbidity and mortality. This study addresses the limitations of subjective variability in traditional diagnostic modalities, particularly angiography, which assesses coronary artery blockages using X-ray images and radio opaque dye. Employing deep learning, the research utilizes a pre-trained U-Net model to efficiently recognize coronary artery structures in X-ray angiography images. Despite challenges like weak contrast and deformable vessel shapes, the model accurately performs image segmentation and calculates vessel stenosis. Achieving a mean F1 score of 0.921, precision of 0.938, and accuracy of 0.915, the model consistently outperforms benchmarks with lower standard deviations. Stenosis identification demonstrates significant prediction accuracy. The study's future implications include predicting stent placement positions and estimating post-stenting circulation success. This innovative approach offers an objective analysis, enhancing diagnostic accuracy in cardiovascular health.
引用
收藏
页码:69 / 80
页数:12
相关论文
共 50 条
  • [1] Adenoid segmentation in X-ray images using U-Net
    Alshbishiri, Ali Abdullah
    Marghalani, Muuth Ahdulrahim
    Khan, Hassan Aqeel
    Ahmad, Rani Ghazi
    Alqarni, Mohammed Ali
    Khan, Muhammad Murtaza
    2021 IEEE NATIONAL COMPUTING COLLEGES CONFERENCE (NCCC 2021), 2021, : 1114 - +
  • [2] Segmentation of Chest X-Ray Images Using U-Net Model
    Hashem S.A.
    Kamil M.Y.
    Mendel, 2022, 28 (02): : 49 - 53
  • [3] Automatic lung segmentation in chest X-ray images using improved U-Net
    Wufeng Liu
    Jiaxin Luo
    Yan Yang
    Wenlian Wang
    Junkui Deng
    Liang Yu
    Scientific Reports, 12
  • [4] Segmentation of lung region from chest X-ray images using U-net
    Furutani, Keigo
    Hirano, Yasushi
    Kido, Shoji
    INTERNATIONAL FORUM ON MEDICAL IMAGING IN ASIA 2019, 2019, 11050
  • [5] Chest X-ray pneumothorax segmentation using U-Net with EfficientNet and ResNet architectures
    Abedalla, Ayat
    Abdullah, Malak
    Al-Ayyoub, Mahmoud
    Benkhelifa, Elhadj
    PeerJ Computer Science, 2021, 7 : 1 - 36
  • [6] Automatic lung segmentation in chest X-ray images using improved U-Net
    Liu, Wufeng
    Luo, Jiaxin
    Yang, Yan
    Wang, Wenlian
    Deng, Junkui
    Yu, Liang
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [7] Semantic Segmentation on Panoramic Dental X-Ray Images Using U-Net Architectures
    Zannah, Rafiatul
    Bashar, Mubtasim
    Bin Mushfiq, Rahil
    Chakrabarty, Amitabha
    Hossain, Shahriar
    Jung, Yong Ju
    IEEE ACCESS, 2024, 12 : 44598 - 44612
  • [8] MERGED U-NET FOR BONE TUMORS X-RAY IMAGES SEGMENTATION
    Xie, Zhaozhi
    Zhao, Keyang
    Yan, Xu
    Wu, Shenghui
    Mei, Jiong
    Lu, Hongtao
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1276 - 1280
  • [9] Femur segmentation in X-ray image based on improved U-Net
    Fan Lianghui
    Han JunGang
    Jia Yang
    Yang Bin
    2019 THE 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, CONTROL AND ROBOTICS (EECR 2019), 2019, 533
  • [10] Automatic Tooth and Background Segmentation in Dental X-ray Using U-Net Convolution Network
    Fariza, Arna
    Arifin, Agus Zainal
    Astuti, Eha Renwi
    2020 6TH INTERNATIONAL CONFERENCE ON SCIENCE IN INFORMATION TECHNOLOGY (ICSITECH): EMBRACING INDUSTRY 4.0: TOWARDS INNOVATION IN DISASTER MANAGEMENT, 2020, : 144 - 149