High-Accuracy Airborne Rangefinder via Deep Learning Based on Piezoelectric Micromachined Ultrasonic Cantilevers

被引:1
|
作者
Moshrefi, Amirhossein [1 ]
Ali, Abid [1 ]
Balghari, Suaid Tariq [1 ]
Nabki, Frederic [1 ]
机构
[1] Univ Quebec, Ecole Technol Super, Dept Elect Engn, Montreal, PQ H3C 1K3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Acoustics; Accuracy; Frequency control; Signal to noise ratio; Sensors; Micromechanical devices; Ultrasonic variables measurement; Acoustic signal processing; airborne ultrasonic range finding; machine learning (ML); piezoelectric micromachined ultrasound cantilever; time-of-flight (ToF) measurement; TRANSDUCER; NOISE;
D O I
10.1109/TUFFC.2024.3433407
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This article presents a high-accuracy air-coupled acoustic rangefinder based on piezoelectric microcantilever beam array using continuous waves. Cantilevers are used to create a functional ultrasonic rangefinder with a range of 0-1 m. This is achieved through a design of custom arrays. This research investigates various classification techniques to identify airborne ranges using ultrasonic signals. The initial approach involves implementing individual models such as support vector machine (SVM), Gaussian Naive Bayes (GNB), logistic regression (LR), k-nearest neighbors (KNNs), and decision tree (DT). To potentially achieve better performance, the study introduces a deep learning (DL) architecture based on convolutional neural networks (CNNs) to categorize different ranges. The CNN model combines the strengths of multiple classification models, aiming for more accurate range detection. To ensure the model generalizes well to unseen data, a technique called k-fold cross-validation (CV), which provides the reliability assessment, is used. The proposed framework demonstrates a significant improvement in accuracy (100%), and area under the curve (AUC) (1.0) over other approaches.
引用
收藏
页码:1074 / 1086
页数:13
相关论文
共 50 条
  • [1] Small blind-area, high-accuracy ultrasonic rangefinder using a broadband multi-frequency piezoelectric micromachined ultrasonic transducer array
    Luo, Guoxi
    He, Kang
    Wang, Yongliang
    Zhou, Wenke
    Chen, Ke
    Zhao, Libo
    Xu, Tingzhong
    Li, Zhikang
    Li, Min
    Yang, Ping
    Wang, Kaifei
    Jiang, Zhuangde
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (12)
  • [2] AN ULTRASONIC RANGEFINDER BASED ON AN AlN PIEZOELECTRIC MICROMACHINED ULTRASOUND TRANSDUCER
    Przybyla, Richard
    Izyumin, Igor
    Kline, Mitchell
    Boser, Bernhard
    Shelton, Stefon
    Guedes, Andre
    Horsley, David
    2010 IEEE SENSORS, 2010, : 2417 - 2421
  • [3] A High-Accuracy Ultrasonic Gas Flowmeter Based on Scandium-Doped Aluminum Nitride Piezoelectric Micromachined Ultrasonic Transducers
    Liu, Hanzhe
    Wang, Xiangyang
    Liu, Chongbin
    Lin, Yuzhe
    Zhang, Lujiang
    Zhao, Hui
    Cui, Xiaofei
    Feng, Jianke
    Wu, Guoqiang
    Tao, Jifang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [4] A High-Accuracy Deep Learning Approach for Wheat Disease Detection
    Patil, Soham Lalit
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 1, SMARTCOM 2024, 2024, 945 : 277 - 291
  • [5] High-accuracy prostate cancer pathology using deep learning
    Tolkach, Yuri
    Dohmgoergen, Tilmann
    Toma, Marieta
    Kristiansen, Glen
    NATURE MACHINE INTELLIGENCE, 2020, 2 (07) : 411 - +
  • [6] High-accuracy prostate cancer pathology using deep learning
    Yuri Tolkach
    Tilmann Dohmgörgen
    Marieta Toma
    Glen Kristiansen
    Nature Machine Intelligence, 2020, 2 : 411 - 418
  • [7] An Electrical-Feedback Based Bandwidth Extension Technique of Piezoelectric Micromachined Ultrasonic Transducers for Airborne Application
    Xu, Tingzhong
    Abbaszadeh, Javad
    Holzmann, Dominik
    Wu, Lixiang
    Moridi, Mohssen
    2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS), 2022,
  • [8] High-Accuracy ncRNA Function Prediction via Deep Learning Using Global and Local Sequence Information
    Orro, Alessandro
    Trombetti, Gabriele. A. A.
    BIOMEDICINES, 2023, 11 (06)
  • [9] Enhanced deep learning approach for high-accuracy mobility coordinate prediction
    Sadiki, Siham
    Belmajdoub, Hanae
    Ibadah, Nisrine
    Minaoui, Khalid
    ANNALS OF TELECOMMUNICATIONS, 2025,
  • [10] A High-Accuracy Two-Stage Deep Learning-Based Resolver to Digital Converter
    KhajueeZadeh, M. S.
    Emadaleslami, M.
    Nasiri-Gheidari, Z.
    2022 13TH POWER ELECTRONICS, DRIVE SYSTEMS, AND TECHNOLOGIES CONFERENCE (PEDSTC), 2022, : 71 - 75