EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR KIRCHHOFF-SCHRODINGER-POISSON SYSTEM WITH CONCAVE AND CONVEX NONLINEARITIES

被引:4
|
作者
Che, Guofeng [1 ]
Chen, Haibo [2 ]
机构
[1] Guangdong Univ Technol, Sch Appl Math, Guangzhou 510006, Guangdong, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Kirchhoff-Schriidinger-Poisson system; concave and convex nonlinearities; Mountain Pass Theorem; Ekeland's variational principle; GROUND-STATE SOLUTIONS; SIGN-CHANGING SOLUTIONS; POSITIVE SOLUTIONS; EQUATION;
D O I
10.4134/JKMS.j190833
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the following Kirchhoff-Schriidinger-Poisson system {-(a+b integral(R3 )vertical bar del u vertical bar(2)dx)Delta u + V(x)u + mu phi u =lambda f(x)vertical bar u vertical bar(p-2)u + g(x)vertical bar u vertical bar(q-2)u, in R-3, -Delta phi = mu vertical bar u vertical bar(2), in R-3,R- where a > 0, b, mu >= 0, p is an element of [1,2), lambda E [4,6) and A > 0 is a parameter. Under some suitable assumptions on V(x), f(x) and g(x), we prove that the above system has at least two different nontrivial solutions via the Ekeland's variational principle and the Mountain Pass Theorem in critical point theory. Some recent results from the literature are improved and extended.
引用
收藏
页码:1551 / 1571
页数:21
相关论文
共 50 条
  • [1] Existence and multiplicity of solutions for Kirchhoff-Schrodinger-Poisson system with critical growth
    Che, Guofeng
    Chen, Haibo
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2022, 33 (01)
  • [2] Existence and multiplicity of positive solutions for Kirchhoff-Schrodinger-Poisson system with critical growth
    Che, Guofeng
    Chen, Haibo
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
  • [3] Multiplicity of solutions to Schrodinger-Poisson system with concave-convex nonlinearities
    Shao, Mengqiu
    Mao, Anmin
    APPLIED MATHEMATICS LETTERS, 2018, 83 : 212 - 218
  • [4] Existence of normalized solutions for fractional Kirchhoff-Schrodinger-Poisson equations with general nonlinearities
    Wang, Li
    Tang, Liqin
    Wang, Jun
    Wang, Jixiu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 8786 - 8807
  • [5] Solutions for planar Kirchhoff-Schrodinger-Poisson systems with general nonlinearities
    Niu, Rui
    Wang, Hefan
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [6] Existence of infinitely many solutions to a class of Kirchhoff-Schrodinger-Poisson system
    Zhao, Guilan
    Zhu, Xiaoli
    Li, Yuhua
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 572 - 581
  • [7] Solutions of a Schrödinger–Kirchhoff–Poisson system with concave–convex nonlinearities
    M. Soluki
    S. H. Rasouli
    G. A. Afrouzi
    Journal of Elliptic and Parabolic Equations, 2023, 9 : 1233 - 1244
  • [8] An existence result for a fractional Kirchhoff-Schrodinger-Poisson system
    Ambrosio, Vincenzo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (02):
  • [9] Multiplicity and concentration of nontrivial solutions for Kirchhoff-Schrodinger-Poisson system with steep potential well
    Shao, Liuyang
    Chen, Haibo
    Wang, Yingmin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (02) : 2022 - 2038
  • [10] Multiplicity of Solutions for Schrodinger Equations with Concave-Convex Nonlinearities
    Wu, Dong-Lun
    Tang, Chun-Lei
    Wu, Xing-Ping
    INTERNATIONAL JOURNAL OF ANALYSIS, 2016,