High coke resistance Ni-based CH4/CO2 reforming catalysts with strong spatial confinement effect: Effect of CeO2 shell thickness

被引:3
|
作者
Yang, Baibin [1 ]
Xu, Junqiang [1 ]
Tang, Tian [1 ,2 ]
Jiang, Linsui [1 ]
Wu, Kuang-Hsu [3 ]
Zhang, Qiang [1 ]
Xie, Maolin [1 ]
Hu, Haojie [1 ]
Guo, Fang [1 ]
机构
[1] Chongqing Univ Technol, Sch Chem & Chem Engn, Chongqing 400054, Peoples R China
[2] Chongqing Univ, Coll Energy & Power Engn, Chongqing 400044, Peoples R China
[3] Univ New South Wales Sydney, Sch Chem Engn, Kensington, NSW 2052, Australia
基金
中国国家自然科学基金;
关键词
Spatial confinement effect; Strong coke resistance; CH; 4; /CO; 2; reforming; DFT study and kinetics study; Core-shell catalyst; METHANE; NICKEL; NANOCATALYST; SELECTIVITY; STEAM; PD;
D O I
10.1016/j.cej.2024.154748
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ni-based catalysts show promise as candidates for the dry reforming of methane (DRM), yet the susceptibility to sintering and carbon deposition is a major obstacle to industrialization. This work demonstrates a mesoporous Ni-based catalyst with a thickness-tailorable CeO2 shell for enhanced spatial confinement effect for the DRM. The Ni-MCM-41@xCeO2 catalysts are prepared at various CeO2 shell thickness through a two-step hydrothermal reaction. The kinetic studies have shown that the Ni-MCM-41@2CeO2 catalyst has the lowest activation energy, producing a high conversion of CH4 and CO2 as high as around 80 % at 700 degrees C. Our characterizations reveal that the Ni core is tightly confined in the mesoporous skeleton of MCM-41 and within a CeO2 shell. The Ni-MCM41@2CeO2 catalyst is able to sustain high activity for more than 10 h of operation, with a remarkably reduced carbon deposition (0.28 %) as compared with a conventional Ni-Ce/MCM-41 catalyst (8.77 %). Furthermore, the density functional theory (DFT) calculation supports that the CeO2 shell layer significantly reduces dissociation potential barrier for CH4 and CO2, hence enhancing the catalytic activity of the DRM.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Effect of Support on Stability and Coke Resistance of Ni-Based Catalyst in Combined Steam and CO2 Reforming of CH4
    Phan Hong Phuong
    Ha Cam Anh
    Nguyen Tri
    Nguyen Phung Anh
    Luu Cam Loc
    ACS OMEGA, 2022, 7 (23): : 20092 - 20103
  • [2] Effect of preparation methods of CeO2 on the properties and performance of Ni/CeO2 in CO2 reforming of CH4
    Zenan Ni
    Xavier Djitcheu
    Xiaoxu Gao
    Jian Wang
    Huimin Liu
    Qijian Zhang
    Scientific Reports, 12
  • [3] Effect of preparation methods of CeO2 on the properties and performance of Ni/CeO2 in CO2 reforming of CH4
    Ni, Zenan
    Djitcheu, Xavier
    Gao, Xiaoxu
    Wang, Jian
    Liu, Huimin
    Zhang, Qijian
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] Ni-based catalysts with coke resistance enhance by radio frequency discharge plasma for CH4/CO2 reforming
    Xu, Junqiang
    Liu, Yalin
    Tian, Huan
    Zhang, Qiang
    Cao, Wuyi
    Chen, Kaipeng
    Guo, Fang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (08) : 5240 - 5249
  • [5] Effect of Precursor Concentration on CeO2/Co3O4 Catalysts for CH4/CO2 Reforming
    Zeng, Shanghong
    Fu, Xiaojuan
    Wang, Xiaoman
    Su, Haiquan
    CATALYSIS LETTERS, 2014, 144 (04) : 561 - 566
  • [6] Effect of Precursor Concentration on CeO2/Co3O4 Catalysts for CH4/CO2 Reforming
    Shanghong Zeng
    Xiaojuan Fu
    Xiaoman Wang
    Haiquan Su
    Catalysis Letters, 2014, 144 : 561 - 566
  • [7] Development of La Doped Ni/CeO2 for CH4/CO2 Reforming
    Menegazzo, Federica
    Pizzolitto, Cristina
    Ghedini, Elena
    Di Michele, Alessandro
    Cruciani, Giuseppe
    Signoretto, Michela
    C-JOURNAL OF CARBON RESEARCH, 2018, 4 (04):
  • [8] Effect of support on performance of Ni based catalysts for CH4/CO2 reforming to syngas
    Li, Xian-Cai
    Li, Shui-Gen
    Yang, Yi-Feng
    Cao, Xiao-Hua
    Xiandai Huagong/Modern Chemical Industry, 2007, 27 (08): : 30 - 33
  • [9] Effect of CeO2 morphology on performance of NiO/CeO2 catalyst in combined steam and CO2 reforming of CH4
    Luu Cam Loc
    Phan Hong Phuong
    Putthea, Dang
    Nguyen Tri
    Nguyen Thi Thuy Van
    Hoang Tien Cuong
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2018, 15 (11-12) : 968 - 982
  • [10] Support effect of Ni/mesoporous silica catalysts for CO2 reforming of CH4
    Chen, Jing
    Piao, Wen Xiang
    Jin, Long Yi
    Li, Zhenghua
    Zhang, Fan
    Kim, Ji Man
    Jin, Mingshi
    RESEARCH ON CHEMICAL INTERMEDIATES, 2018, 44 (06) : 3867 - 3878