MCADFusion: a novel multi-scale convolutional attention decomposition method for enhanced infrared and visible light image fusion

被引:0
|
作者
Zhang, Wangwei [1 ]
Dai, Menghao [1 ]
Zhou, Bin [2 ]
Wang, Changhai [1 ]
机构
[1] Zhengzhou Univ Light Ind, Software Engn Coll, 136 Sci Rd, Zhengzhou 450000, Peoples R China
[2] Zhengzhou Univ Sci & Technol, Elect & Elect Engn Coll, 1 Xueyuan Rd, Zhengzhou 450064, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 08期
关键词
image fusion; multi-scale; convolutional attention decomposition; modal specificity; shared features; ENSEMBLE; NETWORK; NEST;
D O I
10.3934/era.2024233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a method called MCADFusion, a feature decomposition technique specifically designed for the fusion of infrared and visible images, incorporating target radiance and detailed texture. MCADFusion employs an innovative two-branch architecture that effectively ff ectively extracts and decomposes both local and global features from different ff erent source images, thereby enhancing the processing of image feature information. The method begins with a multi-scale feature extraction module and a reconstructor module to obtain local and global feature information from rich source images. Subsequently, the local and global features of different ff erent source images are decomposed using the the channel attention module (CAM) and the spatial attention module (SAM). Feature fusion is then performed through a two-channel attention merging method. Finally, image reconstruction is achieved using the restormer module. During the training phase, MCADFusion employs a two-stage strategy to optimize the network parameters, resulting in high-quality fused images. Experimental results demonstrate that MCADFusion surpasses existing techniques in both subjective visual evaluation and objective assessment on publicly available TNO and MSRS datasets, underscoring its superiority.
引用
收藏
页码:5067 / 5089
页数:23
相关论文
共 50 条
  • [1] Prompt learning and multi-scale attention for infrared and visible image fusion
    Li, Yanan
    Ji, Qingtao
    Jiao, Shaokang
    INFRARED PHYSICS & TECHNOLOGY, 2025, 145
  • [2] Integrating Parallel Attention Mechanisms and Multi-Scale Features for Infrared and Visible Image Fusion
    Xu, Qian
    Zheng, Yuan
    IEEE ACCESS, 2024, 12 : 8359 - 8372
  • [3] Infrared and visible image fusion based on multi-scale dense attention connection network
    Chen Y.
    Zhang J.
    Wang Z.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (18): : 2253 - 2266
  • [4] Infrared and Visible Image Fusion using Multi-Scale Decomposition and Visual Saliency Map
    Chen, Yunfan
    Xie, Han
    Yeo, Donghoon
    Shin, Hyunchul
    2018 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2018, : 243 - 244
  • [5] Infrared and Visible Image Fusion Using Multi-scale Decomposition and Partial Differential Equations
    Trivedi G.
    Sanghvi R.
    International Journal of Applied and Computational Mathematics, 2024, 10 (4)
  • [6] MMF: A Multi-scale MobileNet based fusion method for infrared and visible image
    Liu, Yi
    Miao, Changyun
    Ji, Jianhua
    Li, Xianguo
    INFRARED PHYSICS & TECHNOLOGY, 2021, 119
  • [7] Deep Neural Network for Infrared and Visible Image Fusion Based on Multi-scale Decomposition and Interactive Residual Coordinate Attention
    Zong, Sha
    Xie, Zhihua
    Li, Qiang
    Liu, Guodong
    ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022, 2023, 153 : 254 - 262
  • [8] MFT: Multi-scale Fusion Transformer for Infrared and Visible Image Fusion
    Zhang, Chen-Ming
    Yuan, Chengbo
    Luo, Yong
    Zhou, Xin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VI, 2023, 14259 : 485 - 496
  • [9] Multi-scale convolutional neural networks and saliency weight maps for infrared and visible image fusion
    Yang, Chenxuan
    He, Yunan
    Sun, Ce
    Chen, Bingkun
    Cao, Jie
    Wang, Yongtian
    Hao, Qun
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 98
  • [10] Multi-scale unsupervised network for infrared and visible image fusion based on joint attention mechanism
    Xu, Dongdong
    Zhang, Ning
    Zhang, Yuxi
    Li, Zheng
    Zhao, Zhikang
    Wang, Yongcheng
    Infrared Physics and Technology, 2022, 125