An instability framework of Hopf-Turing-Turing singularity in 2-component reaction-diffusion systems

被引:0
|
作者
Izuhara, Hirofumi [1 ]
Kobayashi, Shunusuke [1 ]
机构
[1] Univ Miyazaki, Fac Engn, 1-1 Gakuen Kibanadainishi, Miyazaki 8892192, Japan
基金
日本学术振兴会;
关键词
Reaction-diffusion system; Pattern formation; Bifurcation analysis; Normal form; SPATIOTEMPORAL CHAOS; HETEROCLINIC CYCLES; PERIODIC-ORBITS; BIFURCATION; DYNAMICS; MODEL;
D O I
10.1007/s13160-024-00668-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates pattern formation in 2-component reaction-diffusion systems with linear diffusion and local reaction terms. We propose a novel instability framework characterized by 0-mode Hopf instability, m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{m}$$\end{document} and m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{m}$$\end{document} + 1 mode Turing instabilities in 2-component reaction-diffusion systems. A normal form for the codimension 3 bifurcation is derived via the center manifold reduction, representing one of the main results in this paper. Additionally, we present numerical results on the bifurcation of certain reaction-diffusion systems and on the chaotic behavior of the normal form.
引用
收藏
页码:63 / 112
页数:50
相关论文
共 50 条
  • [1] ON TURING-HOPF INSTABILITIES IN REACTION-DIFFUSION SYSTEMS
    Ricard, Mariano Rodriguez
    BIOMAT 2007, 2008, : 293 - 313
  • [2] Turing Instability in Reaction-Diffusion Systems with Nonlinear Diffusion
    Zemskov, E. P.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2013, 117 (04) : 764 - 769
  • [3] Turing instability in reaction-diffusion systems with nonlinear diffusion
    E. P. Zemskov
    Journal of Experimental and Theoretical Physics, 2013, 117 : 764 - 769
  • [4] FRONTS BETWEEN HOPF-TYPE AND TURING-TYPE DOMAINS IN A 2-COMPONENT REACTION-DIFFUSION SYSTEM
    HEIDEMANN, G
    BODE, M
    PURWINS, HG
    PHYSICS LETTERS A, 1993, 177 (03) : 225 - 230
  • [5] Turing instability in the reaction-diffusion network
    Zheng, Qianqian
    Shen, Jianwei
    Xu, Yong
    PHYSICAL REVIEW E, 2020, 102 (06)
  • [6] Turing instability in sub-diffusive reaction-diffusion systems
    Nec, Y.
    Nepomnyashchy, A. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (49) : 14687 - 14702
  • [7] Turing Instability of Brusselator in the Reaction-Diffusion Network
    Ji, Yansu
    Shen, Jianwei
    COMPLEXITY, 2020, 2020
  • [8] Turing instability-induced oscillations in coupled reaction-diffusion systems
    Wang, Nan
    Tong, Yuan
    Liu, Fucheng
    Li, Xiaoxuan
    He, Yafeng
    Fan, Weili
    CHINESE PHYSICS B, 2025, 34 (03)
  • [9] Turing instability in reaction-diffusion models on complex networks
    Ide, Yusuke
    Izuhara, Hirofumi
    Machida, Takuya
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 457 : 331 - 347
  • [10] On Turing Instability in Nonhomogeneous Reaction-Diffusion CNN's
    Goras, Liviu
    Ungureanu, Paul
    Chua, Leon O.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2017, 64 (10) : 2748 - 2760