AI-based quantification of TILs using hematoxylin and eosin and immunohistochemistry-stained slides in triple-negative breast cancer.

被引:0
|
作者
Kobayashi, Takuma
Tomioka, Nobumoto
Hatanaka, Kanako C.
Konishi, Teppei
Grynkiewicz, Mateusz
Komura, Daisuke
Ishikawa, Shumpei
Watanabe, Kenichi
Takahashi, Masato
Hatanaka, Yutaka
机构
[1] Biomy Inc, Tokyo, Japan
[2] Natl Hosp Org NHO Hokkaido Canc Ctr, Dept Breast Surg, Sapporo, Hokkaido, Japan
[3] Hokkaido Univ Hosp, Ctr Dev Adv Diagnost, Sapporo, Hokkaido, Japan
[4] Univ Tokyo, Dept Prevent Med, Grad Sch Med, Tokyo, Japan
[5] NHO Hokkaido Canc Ctr, Dept Breast Surg, Sapporo, Hokkaido, Japan
[6] Hokkaido Univ Hosp, Dept Breast Surg, Sapporo, Hokkaido, Japan
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
e13608
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Tumour immune characterisation of primary triple-negative breast cancer using automated image quantification of immunohistochemistry-stained immune cells
    Roostee, Suze
    Ehinger, Daniel
    Jonsson, Mats
    Phung, Bengt
    Jonsson, Goeran
    Sjodahl, Gottfrid
    Staaf, Johan
    Aine, Mattias
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] Deep learning-based quantitative assessment of tumor-infiltrating lymphocytes from hematoxylin and eosin-stained slides in triple-negative breast cancer: A prognostic study
    Kobayashi, Takuma
    Hatanaka, Kanako C.
    Tomioka, Nobumoto
    Konishi, Teppei
    Grynkiewicz, Mateusz
    Komura, Daisuke
    Ishikawa, Shumpei
    Watanabe, Kenichi
    Takahashi, Masato
    Hatanaka, Yutaka
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [3] An AI-based Method to Retrieve Hematoxylin & Eosin Breast Histology Images Using Mammograms
    Hamidinekoo, Azam
    Denton, Erika
    Honnor, Kate
    Zwiggelaar, Reyer
    15TH INTERNATIONAL WORKSHOP ON BREAST IMAGING (IWBI2020), 2020, 11513
  • [4] TMA or whole slides to assess TILs in early-stage triple-negative breast cancer
    Artemyeva, A.
    Chuglova, D.
    Kushnarev, V.
    Krivorotko, P.
    Kudaybergenova, A.
    VIRCHOWS ARCHIV, 2019, 475 : S65 - S65
  • [5] A Review of AI-Based Radiomics and Computational Pathology Approaches in Triple-Negative Breast Cancer: Current and
    Corredor, German
    Bharadwaj, Satvika
    Pathak, Tilak
    Viswanathan, Vidya Sankar
    Toro, Paula
    Madabhushi, Anant
    CLINICAL BREAST CANCER, 2023, 23 (08) : 800 - 812
  • [6] Image Analysis of Breast Cancer Immunohistochemistry-stained Sections Using ImageJ: An RGB-based Model
    Vrekoussis, T.
    Chaniotis, V.
    Navrozoglou, I.
    Dousias, V.
    Pavlakis, K.
    Stathopoulos, E. N.
    Zoras, O.
    ANTICANCER RESEARCH, 2009, 29 (12) : 4995 - 4998
  • [7] Clinical utility of receptor status prediction in breast cancer and misdiagnosis identification using deep learning on hematoxylin and eosin-stained slides
    Shamai, Gil
    Schley, Ran
    Cretu, Alexandra
    Neoran, Tal
    Sabo, Edmond
    Binenbaum, Yoav
    Cohen, Shachar
    Goldman, Tal
    Polonia, Antonio
    Drumea, Keren
    Stoliar, Karin
    Kimmel, Ron
    COMMUNICATIONS MEDICINE, 2024, 4 (01):
  • [8] Blind validation of an AI-based tool for predicting distant relapse from breast cancer HES stained slides
    Garberis, I. J.
    Gaury, V.
    Aubert, V.
    Drubay, D.
    Saillard, C.
    Elgui, K.
    Bernigole, F.
    Jacquet, A.
    Andre, F.
    Lacroix-Triki, M.
    ANNALS OF ONCOLOGY, 2022, 33 (07) : S607 - S607
  • [9] Immunohistochemistry-based molecular subtyping of triple-negative breast cancer and its prognostic significance
    Leeha, Marisa
    Kanokwiroon, Kanyanatt
    Laohawiriyakamol, Suphawat
    Thongsuksai, Paramee
    PATHOLOGY & ONCOLOGY RESEARCH, 2023, 29
  • [10] Prognostic Value of Immunohistochemistry-based Subtyping Before and After Neoadjuvant Chemotherapy in Patients with Triple-negative Breast Cancer
    Wu, Long
    Chen, Minyan
    Lin, Yuxiang
    Zeng, Bangwei
    Guo, Wenhui
    Chen, Lili
    Li, Yan
    Yu, Liuwen
    Li, Jing
    Chen, Xiaobin
    Zhang, Wenzhe
    Li, Shengmei
    Cai, Weifeng
    Zhang, Kun
    Jin, Xuan
    Huang, Jianping
    Lin, Qili
    Yang, Yinghong
    Fu, Fangmeng
    Wang, Chuan
    AMERICAN JOURNAL OF SURGICAL PATHOLOGY, 2024, 48 (01) : 27 - 35