Sparse-structured time-varying parameter vector autoregression for high-dimensional network connectedness measurement

被引:1
|
作者
Lai, Zhao-Rong [1 ]
Tan, Liming [2 ]
Chen, Shaoling [3 ]
Yang, Haisheng [4 ]
机构
[1] Jinan Univ, Dept Math, Jinan, Peoples R China
[2] Shanghai Univ Finance & Econ, Sch Econ, Shanghai, Peoples R China
[3] Jinan Univ, Coll Econ, Jinan, Peoples R China
[4] Sun Yat Sen Univ, Lingnan Coll, Gunagzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Sparse structure; Time-varying parameter VAR; High-dimensional connectedness; Systemic risk; IMPULSE-RESPONSE ANALYSIS; SELECTION; VOLATILITIES;
D O I
10.1016/j.eswa.2024.125136
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new sparse-structured time-varying parameter vector autoregression (SS-TVP-VAR) model to effectively measure high-dimensional network connectedness of financial enterprises. Previous VAR based network connectedness methods require high computational cost and are not feasible for high- dimensional networks of a large number of enterprises. The proposed SS-TVP-VAR not only reduces computational cost but also selects key coefficients when building the VAR model. As a result, it produces a more adaptive and effective connectedness to measure systemic risk caused by extreme events. Studies on 57 listed major financial enterprises in China mainland during a 15-year period show that the proposed SS-TVP-VAR achieves reliable and useful results, and it successfully identifies all the major market events during this time.
引用
收藏
页数:12
相关论文
共 36 条
  • [1] Network Vector Autoregression with Time-Varying Nodal Influence
    Ding, Yi
    Zhu, Xuening
    Pan, Rui
    Zhang, Bo
    COMPUTATIONAL ECONOMICS, 2025,
  • [2] Confidence intervals for parameters in high-dimensional sparse vector autoregression
    Zhu, Ke
    Liu, Hanzhong
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 168
  • [3] Estimation of high-dimensional vector autoregression via sparse precision matrix
    Poignard, Benjamin
    Asai, Manabu
    ECONOMETRICS JOURNAL, 2023, 26 (02): : 307 - 326
  • [4] STATISTICAL INFERENCE FOR HIGH-DIMENSIONAL VECTOR AUTOREGRESSION WITH MEASUREMENT ERROR
    Lyu, Xiang
    Kang, Jian
    Li, Lexin
    STATISTICA SINICA, 2023, 33 : 1435 - 1459
  • [5] Exploring currency interdependence in West Africa: a time-varying parameter vector autoregression analysis
    Bram, Andrew Kwamina
    Ofori, Charles
    Mangudhla, Tinashe
    Nuta, Alina Cristina
    JOURNAL OF RISK FINANCE, 2025, 26 (02) : 320 - 344
  • [6] THE CONNECTEDNESS BETWEEN THE SENTIMENT INDEX AND STOCK RETURN VOLATILITY UNDER COVID-19: A TIME-VARYING PARAMETER VECTOR AUTOREGRESSION APPROACH
    Zhang, Wenting
    Hamori, Shigeyuki
    SINGAPORE ECONOMIC REVIEW, 2021,
  • [7] Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions
    Antonakakis, Nikolaos
    Chatziantoniou, Ioannis
    Gabauer, David
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2020, 13 (04)
  • [8] International monetary policy spillovers: Evidence from a time-varying parameter vector autoregression
    Antonakakis, Nikolaos
    Gabauer, David
    Gupta, Rangan
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2019, 65
  • [9] Time-varying forecast combination for high-dimensional data
    Chen, Bin
    Maung, Kenwin
    JOURNAL OF ECONOMETRICS, 2023, 237 (02)
  • [10] The Impact of Tourism Activities on Carbon Emissions: Evidence Using a Time-Varying Parameter Vector Autoregression Model
    Catik, A. Nazif
    Balli, Esra
    Akdeniz, Coskun
    Cobanoglu, Cihan
    Helmi, Mohamad Husam
    JOURNAL OF ECONOMIC POLICY RESEARCHES-IKTISAT POLITIKASI ARASTIRMALARI DERGISI, 2025, 12 (01):