Patient Event Sequences for Predicting Hospitalization Length of Stay

被引:3
|
作者
Hansen, Emil Riis [1 ]
Nielsen, Thomas Dyhre [1 ]
Mulvad, Thomas [2 ]
Strausholm, Mads Nibe [2 ]
Sagi, Tomer [1 ]
Hose, Katja [1 ,3 ]
机构
[1] Aalborg Univ, Dept Comp Sci, Aalborg, Denmark
[2] North Denmark Reg, Unit Business Intelligence, Aalborg, Denmark
[3] TU Wien, Vienna, Austria
关键词
length of stay prediction; transformers; sequence models;
D O I
10.1007/978-3-031-34344-5_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting patients' hospital length of stay (LOS) is essential for improving resource allocation and supporting decision-making in healthcare organizations. This paper proposes a novel transformer-based model, termed Medic-BERT (M-BERT), for predicting LOS by modeling patient information as sequences of events. We performed empirical experiments on a cohort of 48k emergency care patients from a large Danish hospital. Experimental results show that M-BERT can achieve high accuracy on a variety of LOS problems and outperforms traditional non-sequence-based machine learning approaches.
引用
收藏
页码:51 / 56
页数:6
相关论文
共 50 条
  • [1] Predicting Prolonged Length Of Stay In Pediatric Asthma Patients Requiring Hospitalization
    Patel, A.
    Press, V. G.
    Giles, B. L.
    Sanchez-Pinto, L.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195
  • [2] Factors Predicting Longer Length of Stay for Hospitalization for Allogeneic Stem Cell Transplant
    Godara, Amandeep
    Siddiqui, Nauman S.
    Yared, Jean A.
    Kansagra, Ankit J.
    Dahiya, Saurabh
    BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION, 2019, 25 (03)
  • [3] Using Discrete Event Simulation to Study Patient Length to Stay
    Henneman, P. L.
    Beck, E.
    Balasubramanian, H.
    Li, H.
    Campbell, M. M.
    Osterweil, L. J.
    ANNALS OF EMERGENCY MEDICINE, 2010, 56 (03) : S120 - S120
  • [4] Predicting length of stay in a PECC
    Seymour, Joanne
    INTERNATIONAL JOURNAL OF MENTAL HEALTH NURSING, 2014, 23 : 37 - 37
  • [5] Predicting psychiatric length of stay
    Bezold, HS
    MacDowell, M
    Kunkel, R
    ADMINISTRATION AND POLICY IN MENTAL HEALTH, 1996, 23 (05): : 407 - 423
  • [6] Predicting Length of Stay in Psychiatry
    Wolff, Jan
    McCrone, Paul
    Patel, Anita
    Kaier, Klaus
    Normann, Claus
    JOURNAL OF MENTAL HEALTH POLICY AND ECONOMICS, 2015, 18 : S40 - S41
  • [7] Predicting the post-operative length of stay for the orthopaedic trauma patient
    Deepak Chona
    Nikita Lakomkin
    Catherine Bulka
    Idine Mousavi
    Parth Kothari
    Ashley C. Dodd
    Michelle S. Shen
    William T. Obremskey
    Manish K. Sethi
    International Orthopaedics, 2017, 41 : 859 - 868
  • [8] Predicting the post-operative length of stay for the orthopaedic trauma patient
    Chona, Deepak
    Lakomkin, Nikita
    Bulka, Catherine
    Mousavi, Idine
    Kothari, Parth
    Dodd, Ashley C.
    Shen, Michelle S.
    Obremskey, William T.
    Sethi, Manish K.
    INTERNATIONAL ORTHOPAEDICS, 2017, 41 (05) : 859 - 868
  • [9] Predicting length of stay in psychiatry
    Creed, F
    Tomenson, B
    Anthony, P
    Tramner, M
    PSYCHOLOGICAL MEDICINE, 1997, 27 (04) : 961 - 966
  • [10] Community determinants of psychiatric hospitalization and length of stay
    Rothbard, AB
    Schinnar, AP
    SOCIO-ECONOMIC PLANNING SCIENCES, 1996, 30 (01) : 27 - 38