Visible light driven g-C3N4 photocatalytic pretreatment of rice straw for enhanced biogas production

被引:0
|
作者
Tamilselvan, R. [1 ]
Selwynraj, A. Immanuel [1 ]
机构
[1] Vellore Inst Technol, Sch Mech Engn, Vellore, India
关键词
Biogas; Oxidation; Photocatalyst; Pretreatment; Silica Removal; CO-DIGESTION; BIOMASS; IMPROVE; SILICA; WASTE; WATER;
D O I
10.56042/ijct.v31i5.5886
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
This study investigates the utilization of Graphitic Carbon Nitride (g-C3N4) as a photocatalytic material for enhancing biofuel production from rice straw, an agricultural residue with potential for sustainable energy generation. The melamine-synthesized g-C3N4 is used as a pretreatment agent, where rice straw is immersed in a g-C3N4 solution and exposed to 450-600 nm solar irradiation for varying durations. This pretreatment process modifies the biomass structure, resulting in a reduction of the silica content to 72.05% and an increase in the carbon percentage to 41.58% within the rice straw. Methane production demonstrates the effectiveness of g-C3N4-based pretreatment, with methane production from raw rice straw at 231 mL/g(VS). Co-digestion with waste activated sludge increases methane production to 507 mL/g(VS), while a 3 h pretreatment further enhances it to 547.16 mL/g(VS), and a 6 h pretreatment leads to 595.5 mL/g(VS). Comprehensive characterization techniques confirm the successful modification of biomass structure using g-C3N4.
引用
收藏
页码:762 / 769
页数:8
相关论文
共 50 条
  • [1] Facile Synthesis of Zn Doped g-C3N4 for Enhanced Visible Light Driven Photocatalytic Hydrogen Production
    M. O. Fuentez-Torres
    F. Ortiz-Chi
    C. G. Espinosa-González
    M. Aleman
    A. Cervantes-Uribe
    J. G. Torres-Torres
    M. K. Kesarla
    V. Collins-Martínez
    S. Godavarthi
    L. Martínez-Gómez
    Topics in Catalysis, 2021, 64 : 65 - 72
  • [2] Fabrication of ZnO/g-C3N4 nanocomposites for enhanced visible light driven photocatalytic activity
    Chidhambaram, N.
    Ravichandran, K.
    MATERIALS RESEARCH EXPRESS, 2017, 4 (07):
  • [3] Sulfur/g-C3N4 Composites with Enhanced Visible Light Photocatalytic Activity
    Xu, Yao
    Zhang, Wei-De
    SCIENCE OF ADVANCED MATERIALS, 2014, 6 (12) : 2611 - 2617
  • [4] A novel g-C3N4 photocatalytic pretreatment for reducing silica and modifying the structure of rice straw for sustainable biofuel production
    Tamilselvan, R.
    Selwynraj, A. Immanuel
    FUEL, 2024, 357
  • [5] g-C3N4/ZnCdS heterojunction for efficient visible light-driven photocatalytic hydrogen production
    Bai, Tianyu
    Shi, Xiaofan
    Liu, Ming
    Huang, Hui
    Zhang, Jijie
    Bu, Xian-He
    RSC ADVANCES, 2021, 11 (60) : 38120 - 38125
  • [6] AgBr/g-C3N4 nanocomposites for enhanced visible-light-driven photocatalytic inactivation of Escherichia coli
    Zhan, Sihui
    Hou, Qianlei
    Li, Yi
    Ma, Shuanglong
    Wang, Pengfei
    Li, Yanan
    Wang, Haitao
    RSC ADVANCES, 2018, 8 (60) : 34428 - 34436
  • [7] Ag/g-C3N4 layered composites with enhanced visible light photocatalytic performance
    Chen, Lu
    Man, Yuhong
    Chen, Zhiqian
    Zhang, Yongping
    MATERIALS RESEARCH EXPRESS, 2016, 3 (11)
  • [8] Enhanced visible light photocatalytic activity of g-C3N4 assisted by hydrogen peroxide
    Chen, Quan-Liang
    Liu, Yi-Ling
    Tong, Li-Ge
    MATERIALS RESEARCH EXPRESS, 2018, 5 (04):
  • [9] Enhanced photocatalytic ozonation of organics by g-C3N4 under visible light irradiation
    Liao, Gaozu
    Zhu, Dongyun
    Li, Laisheng
    Lan, Bingyan
    JOURNAL OF HAZARDOUS MATERIALS, 2014, 280 : 531 - 535
  • [10] Defect Engineered g-C3N4 for Efficient Visible Light Photocatalytic Hydrogen Production
    Tay, Qiuling
    Kanhere, Pushkar
    Ng, Chin Fan
    Chen, Shi
    Chakraborty, Sudip
    Huan, Alfred Cheng Hon
    Sum, Tze Chien
    Ahuja, Rajeev
    Chen, Zhong
    CHEMISTRY OF MATERIALS, 2015, 27 (14) : 4930 - 4933