Non-Stationary Difference Equation and Affine Laumon Space II: Quantum Knizhnik-Zamolodchikov Equation

被引:0
|
作者
Awata, Hidetoshi [1 ]
Hasegawa, Koji [2 ]
Kanno, Hiroaki [1 ,3 ]
Ohkawa, Ryo [4 ,5 ]
Shakirov, Shamil [6 ,7 ]
Shiraishi, Jun'ichi [8 ]
Yamada, Yasuhiko [9 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya 4648602, Japan
[2] Tohoku Univ, Math Inst, Sendai 9808578, Japan
[3] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya 4648602, Japan
[4] Osaka Metropolitan Univ, Osaka Cent Adv Math Inst, Osaka 5588585, Japan
[5] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
[6] Univ Geneva, Geneva, Switzerland
[7] Inst Informat Transmiss Problems, Moscow, Russia
[8] Univ Tokyo, Grad Sch Math Sci, Tokyo, 1538914, Japan
[9] Kobe Univ, Dept Math, Kobe 6578501, Japan
关键词
affine Laumon space; quantum affine algebra; non-stationary difference equation; quantum Knizhnik-Zamolodchikov equation; YANG-BAXTER EQUATION; CONFORMAL BLOCKS; LIE-ALGEBRAS; DEFORMATION; INTEGRALS; OPERATOR; VECTORS; FORMULA; SYSTEM; ANALOG;
D O I
10.3842/SIGMA.2024.077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that Shakirov's non-stationary difference equation, when it is truncated, implies the quantum Knizhnik-Zamolodchikov (q-KZ) equation for U-v(A(1)((1))) with 1 generic spins. Namely, we can tune mass parameters so that the Hamiltonian acts on the space of finite Laurent polynomials. Then the representation matrix of the Hamiltonian agrees with the R-matrix, or the quantum 6j symbols. On the other hand, we prove that the K theoretic Nekrasov partition function from the affine Laumon space is identified with the well-studied Jackson integral solution to the q-KZ equation. Combining these results, we establish that the affine Laumon partition function gives a solution to Shakirov's equation, which was a conjecture in our previous paper. We also work out the base-fiber duality and four-dimensional limit in relation with the q-KZ equation.
引用
收藏
页数:55
相关论文
共 50 条
  • [1] BOUNDARY QUANTUM KNIZHNIK-ZAMOLODCHIKOV EQUATION
    Kasatani, Masahiro
    NEW TRENDS IN QUANTUM INTEGRABLE SYSTEMS, 2011, : 157 - 171
  • [2] Quiver varieties and the quantum Knizhnik-Zamolodchikov equation
    Zinn-Justin, P.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 185 (03) : 1741 - 1758
  • [3] Non-Stationary Difference Equation and Affine Laumon Space: Quantization of Discrete Painleve<acute accent> Equation
    Awata, Hidetoshi
    Hasegawa, Koji
    Kanno, Hiroaki
    Ohkawa, Ryo
    Shakirov, Shamil
    Shiraishi, Jun'ichi
    Yamada, Yasuhiko
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19
  • [4] Gauged Knizhnik-Zamolodchikov equation
    Kogan, II
    Lewis, A
    Soloviev, OA
    NUCLEAR PHYSICS B, 1997, : 154 - 158
  • [5] Emptiness formation probability and quantum Knizhnik-Zamolodchikov equation
    Boos, HE
    Korepin, VE
    Smirnov, FA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2004, 19 : 57 - 81
  • [6] On an algebraic version of the Knizhnik-Zamolodchikov equation
    Joyner, Sheldon T.
    RAMANUJAN JOURNAL, 2012, 28 (03): : 361 - 384
  • [7] The quantum Knizhnik-Zamolodchikov equation and non-symmetric Macdonald polynomials
    Kasatani, Masahiro
    Takeyama, Yoshihiro
    NONCOMMUTATIVITY AND SINGULARITIES: PROCEEDINGS OF FRENCH-JAPANESE SYMPOSIA HELD AT IHES IN 2006, 2009, 55 : 249 - +
  • [8] The quantum Knizhnik-Zamolodchikov equation and non-symmetric Macdonald polynomials
    Kasatani, Masahiro
    Takeyama, Yoshihiro
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2007, 50 (03): : 491 - 509
  • [9] Rationality of the Knizhnik-Zamolodchikov equation solution
    Sakhnovich, L. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 163 (01) : 472 - 478
  • [10] Rationality of the Knizhnik-Zamolodchikov equation solution
    L. A. Sakhnovich
    Theoretical and Mathematical Physics, 2010, 163 : 472 - 478