Hindcasting and updating Landsat-based forest structure mapping across years to support forest management and planning

被引:0
|
作者
Bell, David M. [1 ]
Gregory, Matthew J. [2 ]
Yang, Zhiqiang [3 ]
机构
[1] USDA, Forest Serv, Pacific Northwest Res Stn, Corvallis, OR USA
[2] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR USA
[3] USDA, Forest Serv, Rocky Mt Res Stn, Corvallis, OR USA
关键词
Forest inventory; Forest structure; Landsat; Nearest neighbor imputation; Temporal transferability; NEAREST-NEIGHBOR IMPUTATION; LARGE AREAS; TIME; TRANSFORMATION; DISTURBANCE; LANDTRENDR; ABUNDANCE;
D O I
10.1016/j.foreco.2024.122239
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Forest vegetation mapping that integrates forest inventory data with multispectral remote sensing data provides valuable geospatial products for public land management agencies, but resource managers may require rapid updating of maps as new imagery becomes available (updating) or retrospective mapping for times prior to forest inventory plot measurement (hindcasting). While forest attribute mapping using Landsat multispectral imagery is common, the accuracy of applying models outside of reference epoch to support long-term forest monitoring is not normally quantified. We examine whether a Landsat-based mapping approach can support robust, temporally consistent multivariate mapping of forest structure and composition data in support of forest management planning and landscape analysis. Specifically, we ask: how accurate forest attribute mapping was when hindcasting or updating outside of a period of time when forest inventory plot data were available (reference epoch)? In the western Cascade Mountains of Oregon and California, USA, we used the gradient nearest neighbor approach to annually impute USDA Forest Inventory and Analysis (FIA) plot data (2001-2016) to all 30-m forested pixels based on temporally smoothed Landsat multispectral imagery (1986-2021), including basal area, canopy cover, quadratic mean diameter of dominant trees, stand height, and the density of large diameter trees. We made extrapolations from models fit to a 10-year reference epoch to both earlier periods (2001-2006 hindcast) and to later period (2011-2016 update) and quantified prediction accuracies relative to models based on the full data (2001-2016). To evaluate the influence of spatial scale on hindcasting and updating, we compared full and extrapolation model predictions at pixel-level (0.09 ha) and hexagon-level (780 ha). At the plot-level, we found no strong differences between the full and extrapolation model predictions for R-2 and mean error nor among predicted vs. observed regression coefficients. At the pixel-level, average differences due to hindcasting and updating were near zero, though differences varied up to 20 % across pixels. At the hexagon-level, the range in map differences was small (+/- 5 %), but hindcasting resulted in lesser forest attribute predictions. We observed greater variability in pixel-level and hexagon-level prediction differences when hindcasting or updating was temporally further away from the reference period. Using 2001 hindcast and 2016 updated maps as a case study, we found that with hindcasting and updating map differences were spatially aggregated across the study region. Our results support Landsat-based hindcasting and updating of forest attribute mapping beyond the time period covered by forest plot data. Our results suggest aggregating data to coarse spatial resolutions may minimize differences due to hindcasting and updating. Further research is needed to identify the key drivers for prediction differences to improve the accuracy of both hindcasting and updating as a basis for forest monitoring.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Mapping forest disturbances across the Southwestern Amazon: tradeoffs between open-source, Landsat-based algorithms
    Reygadas, Yunuen
    Spera, Stephanie
    Galati, Valerie
    Salisbury, David S.
    Silva, Sonaira
    Novoa, Sidney
    ENVIRONMENTAL RESEARCH COMMUNICATIONS, 2021, 3 (09):
  • [2] Updating Landsat-based forest cover maps with MODIS images using multiscale spectral-spatial-temporal superresolution mapping
    Zhang, Yihang
    Li, Xiaodong
    Ling, Feng
    Atkinson, Peter M.
    Ge, Yong
    Shi, Lingfei
    Du, Yun
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 63 : 129 - 142
  • [3] Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification
    Dorren, LKA
    Maier, B
    Seijmonsbergen, AC
    FOREST ECOLOGY AND MANAGEMENT, 2003, 183 (1-3) : 31 - 46
  • [4] Integration of forest mapping and inventory to support forest management
    Corona, P.
    IFOREST-BIOGEOSCIENCES AND FORESTRY, 2010, 3 : 59 - 64
  • [5] Landsat-Based Land Use Change Assessment in the Brazilian Atlantic Forest: Forest Transition and Sugarcane Expansion
    Silva, Alindomar Lacerda
    Alves, Diogenes Salas
    Ferreira, Matheus Pinheiro
    REMOTE SENSING, 2018, 10 (07)
  • [6] Global, Landsat-based forest-cover change from 1990 to 2000
    Kim, Do-Hyung
    Sexton, Joseph O.
    Noojipady, Praveen
    Huang, Chengquan
    Anand, Anupam
    Channan, Saurabh
    Feng, Min
    Townshend, John R.
    REMOTE SENSING OF ENVIRONMENT, 2014, 155 : 178 - 193
  • [7] The Concept of Landscape Structure, Forest Continuum and Connectivity as a Support in Urban Forest Management and Landscape Planning
    Pirnat, Janez
    Hladnik, David
    FORESTS, 2018, 9 (10):
  • [8] Estimating live forest carbon dynamics with a Landsat-based curve-fitting approach
    Schroeder, Todd A.
    Gray, Andrew
    Harmon, Mark E.
    Wallin, David O.
    Cohen, Warren B.
    Journal of Applied Remote Sensing, 2008, 2 (01):
  • [9] Spectral characterization of forest plantations with Landsat 8/OLI images for forest planning and management
    Alba, Elisiane
    Mello, Eliziane Pivotto
    Marchesan, Juliana
    Silva, Emanuel Araujo
    Tramontina, Juliana
    Pereira, Rudiney Soares
    PESQUISA AGROPECUARIA BRASILEIRA, 2017, 52 (11) : 1072 - 1079
  • [10] Estimating live forest carbon dynamics with a Landsat-based curve-fitting approach
    Schroeder, Todd A.
    Gray, Andrew
    Harmon, Mark E.
    Wallin, David O.
    Cohen, Warren B.
    JOURNAL OF APPLIED REMOTE SENSING, 2008, 2