Enhanced Quantitative Wavefront Imaging for Nano-Object Characterization

被引:1
|
作者
Gentner, Clemence [1 ]
Rogez, Benoit [1 ,3 ]
Robert, Hadrien M. L. [1 ]
Aggoun, Anis [1 ]
Tessier, Gilles [1 ]
Bon, Pierre [2 ]
Berto, Pascal [1 ,4 ,5 ]
机构
[1] Sorbonne Univ, Inst Vis, Inserm, CNRS,UMR 7210,UMR S968, F-75012 Paris, France
[2] Univ Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France
[3] Univ Technol Troyes, CNRS, L2N, UMR 7076, F-10004 Troyes, France
[4] Univ Paris Cite, F-75006 Paris, France
[5] Inst Univ France IUF, F-75231 Paris, France
基金
欧洲研究理事会;
关键词
quantitative phase imaging; sensitivity increase; nanoparticles; scattering contrast; singlenano-object metrology; PHASE; NANOPARTICLES; MICROSCOPY; TRACKING;
D O I
10.1021/acsnano.4c05152
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Quantitative phase imaging enables precise and label-free characterizations of individual nano-objects within a large volume, without a priori knowledge of the sample or imaging system. While emerging common path implementations are simple enough to promise a broad dissemination, their phase sensitivity still falls short of precisely estimating the mass or polarizability of vesicles, viruses, or nanoparticles in single-shot acquisitions. In this paper, we revisit the Zernike filtering concept, originally crafted for intensity-only detectors, with the aim of adapting it to wavefront imaging. We demonstrate, through numerical simulation and experiments based on high-resolution wavefront sensing, that a simple Fourier-plane add-on can significantly enhance phase sensitivity for subdiffraction objects & horbar;achieving over an order of magnitude increase (x12)& horbar;while allowing the quantitative retrieval of both intensity and phase. This advancement allows for more precise nano-object detection and metrology.
引用
收藏
页码:19247 / 19256
页数:10
相关论文
共 50 条
  • [1] Quantitative optical spectroscopy of a single nano-object
    Juve, Vincent
    Lombardi, Anna
    Baida, Hatim
    Blancon, Jean-Christophe
    Crut, Aurelien
    Maioli, Paolo
    Vallee, Fabrice
    Del Fatti, Natalia
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [2] Quantitative determination of a nano-object's atom density without atomic resolution
    Zaum, Christopher
    Meyer, Joerg
    Reuter, Karsten
    Morgenstern, Karina
    PHYSICAL REVIEW B, 2014, 90 (16):
  • [3] Statistical evaluation of single nano-object fluorescence
    Lippitz, M
    Kulzer, F
    Orrit, M
    CHEMPHYSCHEM, 2005, 6 (05) : 770 - 789
  • [4] Evaluation of Nano-Object Magnetization Using Artificial Intelligence
    Goranov, V. A.
    Mikhaltsou, S.
    Surpi, A.
    Cardellini, J.
    Pineiro, Y.
    Rivas, J.
    Valle, F.
    Dediu, V. A.
    APPLIED ARTIFICIAL INTELLIGENCE 2: MEDICINE, BIOLOGY, CHEMISTRY, FINANCIAL, GAMES, ENGINEERING, SICAAI 2023, 2024, 999 : 81 - 89
  • [5] Surface wave scattering by a nano-object situated on a surface
    Bozhevolnyi, S
    Lozovski, V
    Sladkov, M
    SURFACE SCIENCE, 2004, 554 (01) : 33 - 42
  • [6] Internal decoherence in nano-object interferometry due to phonons
    Henkel, C.
    Folman, R.
    AVS QUANTUM SCIENCE, 2022, 4 (02):
  • [7] Pair distribution function analysis of nano-object assemblies
    Zhang, Yugang
    Gang, Oleg
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2023, 56 : 545 - 557
  • [8] Free Nano-Object Ramsey Interferometry for Large Quantum Superpositions
    Wan, C.
    Scala, M.
    Morley, G. W.
    Rahman, Atm. A.
    Ulbricht, H.
    Bateman, J.
    Barker, P. F.
    Bose, S.
    Kim, M. S.
    PHYSICAL REVIEW LETTERS, 2016, 117 (14)
  • [9] Construction of a DNA nano-object directly demonstrates computation
    Wu, Gang
    Jonoska, Natasha
    Seeman, Nadrian C.
    BIOSYSTEMS, 2009, 98 (02) : 80 - 84
  • [10] Effect of the shape of a nano-object on quantum-size states
    Vladimir Dzyuba
    Yurii Kulchin
    Valentin Milichko
    Journal of Nanoparticle Research, 2012, 14