Two-dimensional BC12 as an ultra-high performance anode material for lithium-ion batteries

被引:1
|
作者
Ye, Xiao-Juan [1 ]
Cao, Hong-Bao [1 ]
Shen, Rui [1 ]
Liu, Chun-Sheng [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Integrated Circuit Sci & Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
CAPACITY ELECTRODE MATERIAL; HIGH THEORETICAL CAPACITY; LI-ION; PENTA-GRAPHENE; B2C MONOLAYER; ME-GRAPHENE; BAND-GAP; METAL; NA; PREDICTION;
D O I
10.1063/5.0226785
中图分类号
O59 [应用物理学];
学科分类号
摘要
With the gradual development of renewable energy, search for high-performance energy storage materials as anodes for lithium-ion batteries (LIBs) has become urgent. Two-dimensional (2D) materials are considered as candidates for anode materials due to their unique structure and physicochemical properties. Based on first-principles calculations, we propose a 2D material, BC12 monolayer, as an excellent anode for LIBs. BC12 exhibits outstanding dynamic, mechanical, and thermal stability. In addition, BC12 monolayers show not only remarkably high storage capacity (2767.57 mA h g(-1)) but also low diffusion barrier energy (0.175 eV) and appropriate open circuit voltage (0.3 V). A small volume expansion (0.38%) is also observed during the lithiation process. Furthermore, we undertake a comprehensive analysis on the impact of carbon vacancy in BC12. The presence of carbon vacancy makes the adsorption and diffusion of Li relatively weak, which should be carefully handled in the experimental synthesis process. The above-mentioned investigation offers valuable insights and guidance for the future development and application of 2D anode materials in metal-ion batteries.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Two-Dimensional Mesoporous Carbon Nanosheets as a High-Performance Anode Material for Lithium-Ion Batteries
    Li, Jili
    Yao, Ruimin
    Bai, Ju
    Cao, Chuanbao
    CHEMPLUSCHEM, 2013, 78 (08): : 797 - 800
  • [2] Two-dimensional layered chromium selenophosphate: advanced high-performance anode material for lithium-ion batteries
    Wei, Shuangying
    Mourdikoudis, Stefanos
    Wu, Bing
    Pastika, Jan
    Gusmao, Rui
    Azadmanjiri, Jalal
    Dekanovsky, Lukas
    Luxa, Jan
    Li, Min
    Mazanek, Vlastimil
    Sofer, Zdenek
    2D MATERIALS, 2022, 9 (04)
  • [3] Two-Dimensional Black Phosphorus: An Emerging Anode Material for Lithium-Ion Batteries
    JiPing Zhu
    GuangShun Xiao
    XiuXiu Zuo
    Nano-Micro Letters, 2020, (09) : 218 - 242
  • [4] Two-dimensional phosphorus carbide as a promising anode material for lithium-ion batteries
    Zhang, Wei
    Yin, Jiuren
    Zhang, Ping
    Tang, Xianqiong
    Ding, Yanhuai
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (25) : 12029 - 12037
  • [5] Two-Dimensional Black Phosphorus: An Emerging Anode Material for Lithium-Ion Batteries
    JiPing Zhu
    GuangShun Xiao
    XiuXiu Zuo
    Nano-Micro Letters, 2020, 12
  • [6] Two-Dimensional Black Phosphorus: An Emerging Anode Material for Lithium-Ion Batteries
    JiPing Zhu
    GuangShun Xiao
    XiuXiu Zuo
    Nano-Micro Letters, 2020, 12 (09) : 218 - 242
  • [7] Two-Dimensional Black Phosphorus: An Emerging Anode Material for Lithium-Ion Batteries
    Zhu, JiPing
    Xiao, GuangShun
    Zuo, XiuXiu
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [8] Two-dimensional metallic BP as anode material for lithium-ion and sodium-ion batteries with unprecedented performance
    Sun, Wen-Cong
    Wang, Shan-Shan
    Dong, Shuai
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (24) : 13763 - 13771
  • [9] Two-dimensional metallic BP as anode material for lithium-ion and sodium-ion batteries with unprecedented performance
    Wen-Cong Sun
    Shan-Shan Wang
    Shuai Dong
    Journal of Materials Science, 2021, 56 : 13763 - 13771
  • [10] Two-dimensional Ni-MOF as a high performance anode material for lithium ion batteries
    Zhang, Lin
    Zhang, Xiaofei
    Han, Diandian
    Wu, Shuangyan
    INORGANIC CHEMISTRY COMMUNICATIONS, 2023, 158