Deep Reinforcement Learning-Based Multipath Routing for LEO Megaconstellation Networks

被引:1
|
作者
Han, Chi [1 ]
Xiong, Wei [1 ,2 ]
Yu, Ronghuan [1 ,2 ]
机构
[1] Space Engn Univ, Natl Key Lab Space Target Awareness, Beijing 101400, Peoples R China
[2] Space Engn Univ, Sch Space Informat, Beijing 101400, Peoples R China
关键词
satellite network; multipath routing; deep reinforcement learning; traffic scheduling; hop count; GRAPH NEURAL-NETWORKS; TRAFFIC CONTROL; OPTIMIZATION; CHALLENGES;
D O I
10.3390/electronics13153054
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The expansion of megaconstellation networks (MCNs) represents a promising solution for achieving global Internet coverage. To meet the growing demand for satellite services, multipath routing allows the simultaneous establishment of multiple transmission paths, enabling the transmission of flows in parallel. Nevertheless, the mobility of satellites and time-varying link states presents a challenge for the discovery of optimal paths and traffic scheduling in multipath routing. Given the inflexibility of traditional static deep reinforcement learning (DRL)-based routing algorithms in dealing with time-varying constellation topologies, DRL-based multipath routing (DMR) enabled by a graph neural network (GNN) is proposed as a means of enhancing the transmission performance of MCNs. DMR decouples the stochastic optimization problem of multipath routing under traffic and bandwidth constraints into two subproblems: multipath routing discovery and multipath traffic scheduling. Firstly, the minimum hop count-based multipath route discovery algorithm (MHMRD) is proposed for the computation of multiple available paths between all source and destination nodes. Secondly, the GNN-based multipath traffic scheduling scheme (GMTS) is proposed as a means of dynamically scheduling the traffic on each available path for each data stream, based on the state information of ISLs and traffic demand. Simulation results demonstrate that the proposed scheme can be scaled to constellations with different configurations without the necessity for repeated training and enhance the throughput, completion ratio, and delay by 42.64%, 17.39%, and 3.66% in comparison with the shortest path first algorithm (SPF), respectively.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Multipath Cooperative Routing in Ultradense LEO Satellite Networks: A Deep-Reinforcement-Learning-Based Approach
    Liu, Xiaoyu
    Zhou, Haibo
    Zhang, Zitian
    Gao, Qiangzhou
    Ma, Ting
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (02): : 1789 - 1804
  • [2] Deep Reinforcement Learning-Based Routing for Space-Terrestrial Networks
    Tsai, Kai-Chu
    Yao, Ting-Jui
    Huang, Pin-Hao
    Huang, Cheng-Sen
    Han, Zhu
    Wang, Li-Chun
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [3] Deep Reinforcement Learning-Based Routing on Software-Defined Networks
    Kim, Gyungmin
    Kim, Yohan
    Lim, Hyuk
    IEEE ACCESS, 2022, 10 : 18121 - 18133
  • [4] A Deep Reinforcement Learning-based Routing Scheme with Two Modes for Dynamic Networks
    Cong, Peizhuang
    Zhang, Yuchao
    Wang, Wendong
    Xu, Ke
    Li, Ruidong
    Li, Fuliang
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [5] A Deep Reinforcement Learning based Routing Scheme for LEO Satellite Networks in 6G
    Hsu, Yi-Huai
    Lee, Jiun-Ian
    Xu, Feng-Ming
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [6] Machine Learning-Based Multipath Routing for Software Defined Networks
    Awad, Mohamad Khattar
    Ahmed, Marwa Hassan Hafez
    Almutairi, Ali F.
    Ahmad, Imtiaz
    JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2021, 29 (02)
  • [7] Machine Learning-Based Multipath Routing for Software Defined Networks
    Mohamad Khattar Awad
    Marwa Hassan Hafez Ahmed
    Ali F. Almutairi
    Imtiaz Ahmad
    Journal of Network and Systems Management, 2021, 29
  • [8] A Reinforcement Learning-based Multipath Scheduling for Heterogeneous Wireless Networks
    Nguyen, Thanh Trung
    Vu, Minh Hai
    Le Nguyen, Phi
    Do, Phan Thuan
    Nguyen, Kien
    2022 IEEE 8TH WORLD FORUM ON INTERNET OF THINGS, WF-IOT, 2022,
  • [9] A reinforcement learning-based routing for delay tolerant networks
    Rolla, Vitor G.
    Curado, Marilia
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (10) : 2243 - 2250
  • [10] Reinforcement Learning-Based Routing Protocol for Opportunistic Networks
    Dhurandher, Sanjay Kumar
    Singh, Jagdeep
    Obaidat, Mohammad S.
    Woungang, Isaac
    Srivastava, Samariddhi
    Rodrigues, Joel J. P. C.
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,