RESTRICTIONS ON ANOSOV SUBGROUPS OF Sp (2n, n, R)

被引:0
|
作者
Dey, Subhadip [1 ]
Greenberg, Zachary [2 ]
Riestenberg, J. maxwell [2 ]
机构
[1] Yale Univ, Dept Math, 219 Prospect St, New Haven, CT 06511 USA
[2] Max Planck Inst Math Sci Leipzig, Inselstr 22, D-04103 Leipzig, Germany
基金
欧洲研究理事会;
关键词
CONVERGENCE GROUPS; REPRESENTATIONS;
D O I
10.1090/tran/9257
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n is an element of N and let Theta subset of {1, 1 , ... , n } be a nonempty subset. We prove that if Theta contains an odd integer, then any P Theta-Anosov subgroup of Sp(2n, n, R) is virtually isomorphic to a free group or a surface group. In particular, any Borel Anosov subgroup of Sp(2n, n, R) is virtually isomorphic to a free or surface group. On the other hand, if Theta does not contain any odd integers, then there exists a P Theta-Anosov subgroup of Sp(2n, n, R) which is not virtually isomorphic to a free or surface group. We also exhibit new examples of maximally antipodal subsets of certain flag manifolds; these arise as limit sets of rank 1 subgroups.
引用
收藏
页码:6863 / 6882
页数:20
相关论文
共 50 条