Trap-Assisted Tunneling in PbS Colloidal Quantum Dots Photodetector

被引:0
|
作者
Yan, Qi [1 ]
Deng, Wenjie [1 ]
Ma, Xueliang [1 ]
Wu, Yi [1 ]
Li, Jingzhen [1 ]
You, Congya [2 ]
Yu, Songlin [2 ]
Li, Liya [2 ]
Yu, Xuyang [2 ]
Wang, Peng [1 ]
Zhang, Yongzhe [1 ]
机构
[1] Beijing Univ Technol, Coll Microelect, Fac Informat Technol, Key Lab Optoelect Technol, Beijing 100124, Peoples R China
[2] North China Res Inst Electroopt, Beijing 100015, Peoples R China
基金
中国国家自然科学基金;
关键词
Colloidal quantum dots (CQDs); electrooptic devices; photodetectors; tunneling; GAIN MECHANISM;
D O I
10.1109/TED.2024.3427611
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Currently, colloidal quantum dots (CQDs) photodetectors have shown significant advancement in the field of infrared photodetection. However, the immature analysis of dark current components hinders the realization of higher performance quantum dots optoelectrical devices. In this study, based on a PbS CQD photodetector, we employ a conventional dark current model of infrared photodetectors to analyze the dark current components of the device, yielding fitting results highly consistent with experimental observations. Our findings indicate that with increasing reverse bias, the dominant dark current components of the PbS CQD photodetector shift from diffusion (Diff) current, generation-recombination (G-R) current, and shunt (sh) current to trap-assisted tunneling (TAT) current. The band diagrams, recombination rates, carrier density distributions, and electric field intensity maps under different biases are further simulated, of which the theoretical results confirm that current components transition is attributed to the abundance of defects in quantum dot materials, leading to tunneling at the interface between the SnO2 layer and PbS-I layer under high bias conditions. Our work contributes to providing insight and direction for optimizing the CQD photodetector performances.
引用
收藏
页码:6085 / 6090
页数:6
相关论文
共 50 条
  • [1] PbS quantum dots-induced trap-assisted charge injection in perovskite photodetectors
    Liu, Chang
    Peng, Hui
    Wang, Kai
    Wei, Chunding
    Wang, Zixin
    Gong, Xiong
    NANO ENERGY, 2016, 30 : 27 - 35
  • [2] Trap-Assisted Tunneling in the Schottky Barrier
    Racko, Juraj
    Pechacek, Juraj
    Mikolasek, Miroslav
    Benko, Peter
    Grmanova, Alena
    Harmatha, Ladislav
    Breza, Juraj
    RADIOENGINEERING, 2013, 22 (01) : 240 - 244
  • [3] Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor
    蒋智
    庄奕琪
    李聪
    王萍
    刘予琪
    Chinese Physics B, 2016, 25 (02) : 467 - 471
  • [4] Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor
    Jiang, Zhi
    Zhuang, Yi-Qi
    Li, Cong
    Wang, Ping
    Liu, Yu-Qi
    CHINESE PHYSICS B, 2016, 25 (02)
  • [5] TRAP-ASSISTED TUNNELING IN MIS AND SCHOTTKY STRUCTURES
    CAMPABADAL, F
    MILIAN, V
    AYMERICHHUMET, X
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1983, 79 (01): : 223 - 236
  • [6] Trap-assisted tunneling in AlGaN avalanche photodiodes
    Shao, Z. G.
    Gu, Q. J.
    Yang, X. F.
    Zhang, J.
    Kuang, Y. W.
    Zhang, D. B.
    Yu, H. L.
    Hong, X. K.
    Feng, J. F.
    Liu, Y. S.
    AIP ADVANCES, 2017, 7 (06):
  • [7] Enhanced detectivity of PbS quantum dots infrared photodetector by introducing the tunneling effect of PMMA
    Ma, Zhenzhen
    Li, Jiahui
    Zhang, Yating
    Zhao, Hongliang
    Li, Qingyan
    Ma, Chengqi
    Yao, Jianquan
    NANOTECHNOLOGY, 2021, 32 (19)
  • [8] Trap effects in PbS quantum dots
    Persans, PD
    Filin, A
    Huang, F
    Vitek, A
    Rao, PGN
    Doremus, RH
    QUANTUM DOTS, NANOPARTICLES AND NANOWIRES, 2004, 789 : 371 - 376
  • [9] Ultrasmall colloidal PbS quantum dots
    Reilly, Nick
    Wehrung, Michael
    O'Dell, Ryan Andrew
    Sun, Liangfeng
    MATERIALS CHEMISTRY AND PHYSICS, 2014, 147 (1-2) : 1 - 4
  • [10] Unification of three multiphonon trap-assisted tunneling mechanisms
    Zhang, Manhong
    Huo, Zongliang
    Yu, Zhaoan
    Liu, Jing
    Liu, Ming
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (11)