Idempotents and homology of diagram algebras

被引:0
|
作者
Boyde, Guy [1 ]
机构
[1] Univ Utrecht, Math Inst, Heidelberglaan 8, NL-3584 CS Utrecht, Netherlands
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Primary; 20J06; 16E40; Secondary; 20B30; REPRESENTATIONS;
D O I
10.1007/s00208-024-02960-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides a systematization of some recent results in homology of algebras. Our main theorem gives criteria under which the homology of a diagram algebra is isomorphic to the homology of the subalgebra on diagrams having the maximum number of left-to-right connections. From this theorem, we deduce the 'invertible-parameter' cases of the Temperley-Lieb and Brauer results of Boyd-Hepworth and Boyd-Hepworth-Patzt. We are also able to give a new proof of Sroka's theorem that the homology of an odd-strand Temperley-Lieb algebra vanishes, as well as an analogous result for Brauer algebras and an interpretation of both results in the even-strand case. Our proofs are relatively elementary: in particular, no auxiliary chain complexes or spectral sequences are required. We briefly discuss the relationship to cellular algebras in the sense of Graham-Lehrer.
引用
收藏
页码:2173 / 2207
页数:35
相关论文
共 50 条
  • [1] Idempotents and homology of diagram algebrasIdempotents and homology of diagram algebrasG. Boyde
    Guy Boyde
    Mathematische Annalen, 2025, 391 (2) : 2173 - 2207
  • [2] Enumeration of idempotents in diagram semigroups and algebras
    Dolinka, Igor
    East, James
    Evangelou, Athanasios
    FitzGerald, Des
    Ham, Nicholas
    Hyde, James
    Loughlin, Nicholas
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2015, 131 : 119 - 152
  • [3] On the Idempotents of Hecke Algebras
    A. P. Isaev
    A. I. Molev
    A. F. Os’kin
    Letters in Mathematical Physics, 2008, 85 : 79 - 90
  • [4] Idempotents in Banach algebras
    Berkani, M
    STUDIA MATHEMATICA, 1996, 120 (02) : 155 - 158
  • [5] IDEMPOTENTS IN GROUP ALGEBRAS
    RUDIN, W
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1963, 69 (02) : 224 - &
  • [6] Idempotents of Clifford algebras
    Ablamowicz, R
    Fauser, B
    Podlaski, K
    Rembielinski, J
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2003, 53 (11) : 949 - 954
  • [7] Idempotents in conformal algebras
    Zelmanov, E
    PROCEEDINGS OF THE THIRD INTERNATIONAL ALGEBRA CONFERENCE, 2003, : 257 - 266
  • [8] On the idempotents of Hecke algebras
    Isaev, A. P.
    Molev, A. I.
    Os'kin, A. F.
    LETTERS IN MATHEMATICAL PHYSICS, 2008, 85 (01) : 79 - 90
  • [9] Operator algebras of idempotents
    Paulsen, VI
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 181 (02) : 209 - 226
  • [10] IDEMPOTENTS IN ALGEBRAS AND ALGEBRAIC BANACH ALGEBRAS
    LAFFEY, TJ
    PROCEEDINGS OF THE ROYAL IRISH ACADEMY SECTION A-MATHEMATICAL AND PHYSICAL SCIENCES, 1975, 75 (22) : 303 - 306