Microbial life-history strategies and particulate organic carbon mediate formation of microbial necromass carbon and stabilization in response to biochar addition

被引:4
|
作者
Zhang, Yeye [1 ]
Wang, Tao [1 ]
Yan, Chun [1 ]
Li, Yuze [2 ]
Mo, Fei [1 ]
Han, Juan [1 ]
机构
[1] Northwest A&F Univ, Coll Agron, Yangling 712100, Shaanxi, Peoples R China
[2] Sichuan Agr Univ, Coll Agron, Chengdu 611130, Sichuan, Peoples R China
关键词
Microbial necromass carbon; Biochar; Nitrogen fertilizer; Microbial life-history strategy; Particulate organic carbon; Mineral-associated organic carbon; SOIL CARBON; AMINO SUGAR; LITTER; DIVERSITY; GLUCOSE; BIOMASS; MATTER; ROOT; DYNAMICS; BACTERIA;
D O I
10.1016/j.scitotenv.2024.175041
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microbial necromass carbon (MNC) contributes significantly to the formation of soil organic carbon (SOC). However, the microbial carbon sequestration effect of biochar is often underestimated and influenced by nutrient availability. The mechanisms associated with the formation and stabilization of MNC remain unclear, especially under the combined application of biochar and nitrogen (N) fertilizer. Thus, in a long-term field experiment (11 years) based on biochar application, we utilized bacterial 16S rRNA gene sequencing, fungal ITS amplicon sequencing, metagenomics, and microbial biomarkers to examine the interactions between MNC accumulation and microbial metabolic strategies under combined treatment with biochar and N fertilizer. We aimed to identify the critical microbial modules and species involved, and to analyze the sites where MNC was immobilized from various components. Biochar application increased the MNC content by 13.9 %. Among the MNC components, fungal necromass contributed more to MNC, but bacteria were more readily enriched after biochar application. The microbial life-history strategies that affected MNC formation under the application of various amounts biochar were linked to the N application level. Under N added at 226.5 kg ha- 1, communities such as Actinobacteria and Bacteroidetes with high-growth yield strategies were prevalent and contributed to MNC production. By contrast, under N added at 113.25 kg ha(-1) with high biochar application, Proteobacteria with strong resource acquisition strategies were dominant and MNC accumulation was lower. The mineral-associated organic carbon pool was rapidly saturated with the addition of biochar, so the contribution of fungal necromass carbon may have been reduced by reutilization, thereby resulting in the more rapid preservation of bacterial necromass carbon in the particulate organic carbon pool. Overall, our findings indicate that microbial life history traits are crucial for linking microbial metabolic processes to the accumulation and stabilization of MNC, thereby highlighting the their importance for SOC accumulation in farmland soils, and the need to tailor appropriate biochar and N fertilizer application strategies for agricultural soils.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Microbial life-history strategies mediate microbial carbon pump efficacy in response to N management depending on stoichiometry of microbial demand
    Yang, Liyang
    Canarini, Alberto
    Zhang, Wushuai
    Lang, Ming
    Chen, Yuanxue
    Cui, Zhenling
    Kuzyakov, Yakov
    Richter, Andreas
    Chen, Xinping
    Zhang, Fusuo
    Tian, Jing
    GLOBAL CHANGE BIOLOGY, 2024, 30 (05)
  • [2] Microbial life-history strategies mediate temperature effects on organic carbon pools in black soils
    Lihui Lyu
    Chaoqun Wang
    Kunkun Fan
    Jiasui Li
    Teng Yang
    Guifeng Gao
    Ru Sun
    Jiao Wang
    Xiyuan Xu
    Yuxiao Zhang
    Yuying Ma
    Jiabao Zhang
    Yakov Kuzyakov
    Haiyan Chu
    Soil Ecology Letters, 2025, 7 (3)
  • [3] Microbial necromass carbon contributed to soil organic carbon accumulation and stabilization in the newly formed inland wetlands
    Liu, Xiaoke
    Wang, Yijing
    Zhao, Yongkang
    Zhang, Xuan
    Wang, Yan
    Cao, Qingqing
    Liu, Jian
    ENVIRONMENTAL RESEARCH, 2025, 264
  • [4] Effects of biochar on the accumulation of necromass-derived carbon, the physical protection and microbial mineralization of soil organic carbon
    Chen, Yalan
    Sun, Ke
    Yang, Yan
    Gao, Bo
    Zheng, Hao
    CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2024, 54 (01) : 39 - 67
  • [5] The contribution of microbial necromass carbon to soil organic carbon in soil aggregates
    Zhang, Qi
    Li, Xiangyang
    Liu, Jianjian
    Liu, Jiayi
    Han, Lei
    Wang, Xing
    Liu, Hanyu
    Xu, Miaoping
    Yang, Gaihe
    Ren, Chengjie
    Han, Xinhui
    APPLIED SOIL ECOLOGY, 2023, 190
  • [6] Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization
    Buckeridge, Kate M.
    Mason, Kelly E.
    McNamara, Niall P.
    Ostle, Nick
    Puissant, Jeremy
    Goodall, Tim
    Griffiths, Robert, I
    Stott, Andrew W.
    Whitaker, Jeanette
    COMMUNICATIONS EARTH & ENVIRONMENT, 2020, 1 (01):
  • [7] Environmental stress response limits microbial necromass contributions to soil organic carbon
    Crowther, Thomas W.
    Sokol, Noah W.
    Oldfield, Emily E.
    Maynard, Daniel S.
    Thomas, Stephen M.
    Bradford, Mark A.
    SOIL BIOLOGY & BIOCHEMISTRY, 2015, 85 : 153 - 161
  • [8] Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization
    Kate M. Buckeridge
    Kelly E. Mason
    Niall P. McNamara
    Nick Ostle
    Jeremy Puissant
    Tim Goodall
    Robert I. Griffiths
    Andrew W. Stott
    Jeanette Whitaker
    Communications Earth & Environment, 1
  • [9] Microbial inoculants addition increases microbial necromass but decreases plant lignin contribution to soil organic carbon in rice paddies
    Hu, Quanyi
    Zhang, Xuelin
    Zhang, Ziwei
    Wang, Ruofei
    Feng, Cheng
    Xie, Yingxin
    Chen, Shaojie
    Liu, Tianqi
    SOIL & TILLAGE RESEARCH, 2025, 250
  • [10] Microbial necromass as the source of soil organic carbon in global ecosystems
    Wang, Baorong
    An, Shaoshan
    Liang, Chao
    Liu, Yang
    Kuzyakov, Yakov
    SOIL BIOLOGY & BIOCHEMISTRY, 2021, 162