Performance Analysis for Resource Constrained Decentralized Federated Learning Over Wireless Networks

被引:3
|
作者
Yan, Zhigang [1 ]
Li, Dong [1 ]
机构
[1] Macau Univ Sci & Technol, Sch Comp Sci & Engn, Macau, Peoples R China
关键词
Decentralized federated learning; resource constraint; package error; fading channel; CONVERGENCE; ALGORITHM;
D O I
10.1109/TCOMM.2024.3362143
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated learning (FL) can generate huge communication overhead for the central server, which may cause operational challenges. Furthermore, the central server's failure or compromise may result in a breakdown of the entire system. To mitigate this issue, decentralized federated learning (DFL) has been proposed as a more resilient framework that does not rely on a central server, as demonstrated in previous works. DFL involves the exchange of parameters between each device through a wireless network. To optimize the communication efficiency of the DFL system, various transmission schemes have been proposed and investigated. However, the limited communication resources present a significant challenge for these schemes. Therefore, to explore the impact of constrained resources, such as computation and communication costs on the DFL, this study analyzes the model performance of resource-constrained DFL using different communication schemes (digital and analog) over wireless networks. Specifically, we provide convergence bounds for both digital and analog transmission approaches, enabling analysis of the model performance trained on DFL. Furthermore, for digital transmission, we investigate and analyze resource allocation between computation and communication and convergence rates, obtaining its communication complexity and the minimum probability of correction communication required for convergence guarantee. For analog transmission, we discuss the impact of channel fading and noise on the model performance and the maximum errors accumulation with convergence guarantee over fading channels. Finally, we conduct numerical simulations to evaluate the performance and convergence rate of convolutional neural networks (CNNs) and Vision Transformer (ViT) trained in the DFL framework on fashion-MNIST and CIFAR-10 datasets. Our simulation results validate our analysis and discussion, revealing how to improve performance by optimizing system parameters under different communication conditions.
引用
收藏
页码:4084 / 4100
页数:17
相关论文
共 50 条
  • [1] Adaptive Decentralized Federated Learning in Resource-Constrained IoT Networks
    Du, Mengxuan
    Zheng, Haifeng
    Gao, Min
    Feng, Xinxin
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (06) : 10739 - 10753
  • [2] Federated Learning Over Wireless Networks: Convergence Analysis and Resource Allocation
    Dinh, Canh T.
    Tran, Nguyen H.
    Nguyen, Minh N. H.
    Hong, Choong Seon
    Bao, Wei
    Zomaya, Albert Y.
    Gramoli, Vincent
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2021, 29 (01) : 398 - 409
  • [3] Decentralized Federated Learning on the Edge Over Wireless Mesh Networks
    Salama, Abdelaziz
    Stergioulis, Achilleas
    Zaidi, Syed Ali Raza
    McLernon, Des
    IEEE ACCESS, 2023, 11 : 124709 - 124724
  • [4] Wireless Federated Learning over Resource-Constrained Networks: Digital versus Analog Transmissions
    Yao J.
    Xu W.
    Yang Z.
    You X.
    Bennis M.
    Poor H.V.
    IEEE Transactions on Wireless Communications, 2024, 23 (10) : 1 - 1
  • [5] Federated Learning in Unreliable and Resource-Constrained Cellular Wireless Networks
    Salehi, Mohammad
    Hossain, Ekram
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (08) : 5136 - 5151
  • [6] Performance Optimization of Federated Learning over Wireless Networks
    Chen, Mingzhe
    Yang, Zhaohui
    Saad, Walid
    Yin, Changchuan
    Poor, H. Vincent
    Cui, Shuguang
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [7] Agent Selection Framework for Federated Learning in Resource-Constrained Wireless Networks
    Raftopoulou, Maria
    Da Silva, Jose Mairton B.
    Litjens, Remco
    Vincent Poor, H.
    Van Mieghem, Piet
    IEEE Transactions on Machine Learning in Communications and Networking, 2024, 2 : 1265 - 1282
  • [8] Resource Management and Fairness for Federated Learning over Wireless Edge Networks
    Balakrishnan, Ravikumar
    Akdeniz, Mustafa
    Dhakal, Sagar
    Himayat, Nageen
    PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC2020), 2020,
  • [9] Wireless Decentralized Federated Learning with Energy-Constrained Clients
    Wu, Sili
    Shen, Sheng
    Yeoh, Phee Lep
    Lim, Teng Joon
    2023 IEEE 9TH WORLD FORUM ON INTERNET OF THINGS, WF-IOT, 2023,
  • [10] Performance Optimization of Federated Learning over Mobile Wireless Networks
    Chen, Mingzhe
    Poor, H. Vincent
    Saad, Walid
    Cui, Shuguang
    PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC2020), 2020,