Fault Diagnosis Method of Special Vehicle Bearing Based on Multi-Scale Feature Fusion and Transfer Adversarial Learning

被引:0
|
作者
Xiao, Zhiguo [1 ,2 ,3 ]
Li, Dongni [1 ,3 ]
Yang, Chunguang [3 ]
Chen, Wei [3 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100811, Peoples R China
[2] Changchun Univ, Coll Comp Sci & Technol, Changchun 130022, Peoples R China
[3] Natl Key Lab Special Vehicle Design & Mfg Integrat, Baotou 014030, Peoples R China
关键词
rolling bearing; fault diagnosis; multi-scale feature extraction; transfer learning;
D O I
10.3390/s24165181
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To address the issues of inadequate feature extraction for rolling bearings, inaccurate fault diagnosis, and overfitting in complex operating conditions, this paper proposes a rolling bearing diagnosis method based on multi-scale feature fusion and transfer adversarial learning. Firstly, a multi-scale convolutional fusion layer is designed to effectively extract fault features from the original vibration signals at multiple time scales. Through a feature encoding fusion module based on the multi-head attention mechanism, feature fusion extraction is performed, which can model long-distance contextual information and significantly improve diagnostic accuracy and anti-noise capability. Secondly, based on the domain adaptation (DA) cross-domain feature adversarial learning strategy of transfer learning methods, the extraction of optimal domain-invariant features is achieved by reducing the gap in data distribution between the target domain and the source domain, addressing the call for research on fault diagnosis across operating conditions, equipment, and virtual-real migrations. Finally, experiments were conducted to verify and optimize the effectiveness of the feature extraction and fusion network. A public bearing dataset was used as the source domain data, and special vehicle bearing data were selected as the target domain data for comparative experiments on the effect of network transfer learning. The experimental results demonstrate that the proposed method exhibits an exceptional performance in cross-domain and variable load environments. In multiple bearing cross-domain transfer learning tasks, the method achieves an average migration fault diagnosis accuracy rate of up to 98.65%. When compared with existing methods, the proposed method significantly enhances the ability of data feature extraction, thereby achieving a more robust diagnostic performance.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Multi-Scale Rolling Bearing Fault Diagnosis Method Based on Transfer Learning
    Yin, Zhenyu
    Zhang, Feiqing
    Xu, Guangyuan
    Han, Guangjie
    Bi, Yuanguo
    APPLIED SCIENCES-BASEL, 2024, 14 (03):
  • [2] Multi-scale Feature Learning Network for Bearing fault Diagnosis with Information Fusion
    Luo, Shuyang
    Zhou, Qi
    2024 10TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTIC, ICCAR 2024, 2024, : 191 - 196
  • [3] Bearing fault diagnosis based on DNN using multi-scale feature fusion
    Zhou, Funa
    Zhang, Zhiqiang
    Chen, Danmin
    2020 35TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2020, : 150 - 155
  • [4] A multi-scale feature extraction and fusion method for bearing fault diagnosis based on hybrid attention mechanism
    Meng, Huan
    Zhang, Jiakai
    Zhao, Jingbo
    Wang, Daichao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 31 - 41
  • [5] ADVERSARIAL SUBDOMAIN ADAPTATION METHOD BASED ON MULTI-SCALE FEATURES FOR BEARING FAULT DIAGNOSIS
    Zhou, Yuguo
    Jin, Zhao
    Zhang, Zhikai
    Geng, Zengrong
    Zhou, Lijian
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024, 7 (04): : 485 - 511
  • [6] A train bearing imbalanced fault diagnosis method based on extended CCR and multi-scale feature fusion network
    He, Changfu
    He, Deqiang
    Wei, Zexian
    Xu, Kai
    Chen, Yanjun
    Shan, Sheng
    NONLINEAR DYNAMICS, 2024, 112 (15) : 13147 - 13173
  • [7] Rolling Bearing Fault Diagnosis based on Multi-scale Entropy Feature and Ensemble Learning
    Zhang, Mei
    Wang, Zhihui
    Zhang, Jie
    MANUFACTURING TECHNOLOGY, 2024, 24 (03): : 492 - 506
  • [8] Fault diagnosis of rolling bearing based on feature fusion of multi-scale deep convolutional network
    Wang N.
    Ma P.
    Zhang H.
    Wang C.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (04): : 351 - 358
  • [9] Bearing Fault Diagnosis Method Based on Multi-Scale Fusion Denoising Capsule Network
    Chen, Lisha
    Wang, Youming
    Cao, Gongqing
    Pang, Ji
    Tan, Jiyong
    2024 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, ICMA 2024, 2024, : 1434 - 1439
  • [10] Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion
    Han K.
    Zhan H.
    Yu J.
    Wang R.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (06): : 1285 - 1295