Unveiling the black box: A systematic review of Explainable Artificial Intelligence in medical image analysis

被引:4
|
作者
Muhammad, Dost [1 ]
Bendechache, Malika [1 ]
机构
[1] Univ Galway, ADAPT Res Ctr, Sch Comp Sci, Galway, Ireland
基金
爱尔兰科学基金会;
关键词
Explainable AI; Medical image analysis; XAI in medical imaging; XAI in healthcare; AI; PREDICTION; DECISIONS;
D O I
10.1016/j.csbj.2024.08.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This systematic literature review examines state-of-the-art Explainable Artificial Intelligence (XAI) methods applied to medical image analysis, discussing current challenges and future research directions, and exploring evaluation metrics used to assess XAI approaches. With the growing efficiency of Machine Learning (ML) and Deep Learning (DL) in medical applications, there's a critical need for adoption in healthcare. However, their "black-box" nature, where decisions are made without clear explanations, hinders acceptance in clinical settings where decisions have significant medicolegal consequences. Our review highlights the advanced XAI methods, identifying how they address the need for transparency and trust in ML/DL decisions. We also outline the challenges faced by these methods and propose future research directions to improve XAI in healthcare. This paper aims to bridge the gap between cutting-edge computational techniques and their practical application in healthcare, nurturing a more transparent, trustworthy, and effective use of AI in medical settings. The insights guide both research and industry, promoting innovation and standardisation in XAI implementation in healthcare.
引用
收藏
页码:542 / 560
页数:19
相关论文
共 50 条
  • [1] Opening the Black Box: A systematic review on explainable artificial intelligence in remote sensing
    Hoehl, Adrian
    Obadic, Ivica
    Fernandez-Torres, Miguel-Angel
    Najjar, Hiba
    Oliveira, Dario Augusto Borges
    Akata, Zeynep
    Dengel, Andreas
    Zhu, Xiao Xiang
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2024, 12 (04) : 261 - 304
  • [2] Explainable Artificial Intelligence in the Medical Domain: A Systematic Review
    Chakrobartty, Shuvro
    El-Gayar, Omar
    DIGITAL INNOVATION AND ENTREPRENEURSHIP (AMCIS 2021), 2021,
  • [3] Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence
    Vikas Hassija
    Vinay Chamola
    Atmesh Mahapatra
    Abhinandan Singal
    Divyansh Goel
    Kaizhu Huang
    Simone Scardapane
    Indro Spinelli
    Mufti Mahmud
    Amir Hussain
    Cognitive Computation, 2024, 16 : 45 - 74
  • [4] Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence
    Hassija, Vikas
    Chamola, Vinay
    Mahapatra, Atmesh
    Singal, Abhinandan
    Goel, Divyansh
    Huang, Kaizhu
    Scardapane, Simone
    Spinelli, Indro
    Mahmud, Mufti
    Hussain, Amir
    COGNITIVE COMPUTATION, 2024, 16 (01) : 45 - 74
  • [5] Explainable Artificial Intelligence (XAI) for Oncological Ultrasound Image Analysis: A Systematic Review
    Wyatt, Lucie S.
    van Karnenbeek, Lennard M.
    Wijkhuizen, Mark
    Geldof, Freija
    Dashtbozorg, Behdad
    APPLIED SCIENCES-BASEL, 2024, 14 (18):
  • [6] Explainable Artificial Intelligence in Radiotherapy: A Systematic review
    Heising, Luca M.
    Wolfs, Cecile J. A.
    Jacobs, Maria J. A.
    Verhaegen, Frank
    Ou, Carol X. J.
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S4444 - S4446
  • [7] Physiological signal analysis using explainable artificial intelligence: A systematic review
    Shen, Jian
    Wu, Jinwen
    Liang, Huajian
    Zhao, Zeguang
    Li, Kunlin
    Zhu, Kexin
    Wang, Kang
    Ma, Yu
    Hu, Wenbo
    Guo, Chenxu
    Zhang, Yanan
    Hu, Bin
    NEUROCOMPUTING, 2025, 618
  • [8] Demystifying the black box: A survey on explainable artificial intelligence (XAI) in bioinformatics
    Budhkar, Aishwarya
    Song, Qianqian
    Su, Jing
    Zhang, Xuhong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2025, 27 : 346 - 359
  • [9] Solving the Black Box Problem: A Normative Framework for Explainable Artificial Intelligence
    Zednik C.
    Philosophy & Technology, 2021, 34 (2) : 265 - 288
  • [10] Explainable Artificial Intelligence for Cytological Image Analysis
    Roehrl, Stefan
    Maier, Hendrik
    Lengl, Manuel
    Klenk, Christian
    Heim, Dominik
    Knopp, Martin
    Schumann, Simon
    Hayden, Oliver
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2023, 2023, 13897 : 75 - 85