Research on building extraction from remote sensing imagery using efficient lightweight residual network

被引:0
|
作者
Gao, Ai [1 ]
Yang, Guang [1 ]
机构
[1] Inst Disaster Prevent, Sch Informat Engn, Sanhe, Peoples R China
基金
中国国家自然科学基金;
关键词
ELRNet; Building extraction; Lightweight neural networks; Lightweight feature extraction modules; Very high-resolution remote sensing images;
D O I
10.7717/peerj-cs.2006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic building extraction from very high-resolution remote sensing images is of great significance in several application domains, such as emergency information analysis and intelligent city construction. In recent years, with the development of deep learning technology, convolutional neural networks (CNNs) have made considerable progress in improving the accuracy of building extraction from remote sensing imagery. However, most existing methods require numerous parameters and large amounts of computing and storage resources. This affects their efficiency and limits their practical application. In this study, to balance the accuracy and amount of computation required for building extraction, a novel efficient lightweight residual network (ELRNet) with an encoder-decoder structure is proposed for building extraction. ELRNet consists of a series of downsampling blocks and lightweight feature extraction modules (LFEMs) for the encoder and an appropriate combination of LFEMs and upsampling blocks for the decoder. The key to the proposed ELRNet is the LFEM which has depthwisefactorised convolution incorporated in its design. In addition, the effective channel attention (ECA) added to LFEM, performs local cross-channel interactions, thereby fully extracting the relevant information between channels. The performance of ELRNet was evaluated on the public WHU Building dataset, achieving 88.24% IoU with 2.92 GFLOPs and 0.23 million parameters. The proposed ELRNet was compared with six state-of-the-art baseline networks (SegNet, U-Net, ENet, EDANet, ESFNet, and ERFNet). The results show that ELRNet offers a better tradeoff between accuracy and efficiency in the automatic extraction of buildings in very highresolution remote sensing images. This code is publicly available on GitHub (https://github.com/GaoAi/ELRNet).
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A Lightweight Network for Building Extraction From Remote Sensing Images
    Huang, Huaigang
    Chen, Yiping
    Wang, Ruisheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Feature Residual Analysis Network for Building Extraction from Remote Sensing Images
    Miao, Yuqi
    Jiang, Shanshan
    Xu, Yiming
    Wang, Dongjie
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [3] Building Extraction From Remote Sensing Imagery With a High-Resolution Capsule Network
    Yu, Yongtao
    Liu, Chao
    Gao, Junyong
    Jin, Shenghua
    Jiang, Xiaoling
    Jiang, Mingxin
    Zhang, Haiyan
    Zhang, Yahong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [4] Automated building extraction using satellite remote sensing imagery
    Hu, Qintao
    Zhen, Liangli
    Mao, Yao
    Zhou, Xi
    Zhou, Guozhong
    AUTOMATION IN CONSTRUCTION, 2021, 123
  • [5] QUALITY ASSESSMENT OF BUILDING EXTRACTION FROM REMOTE SENSING IMAGERY
    Avbelj, Janja
    Mueller, Rupert
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [6] LRAD-Net: An Improved Lightweight Network for Building Extraction From Remote Sensing Images
    Liu, Jiabin
    Huang, Huaigang
    Sun, Hanxiao
    Wu, Zhifeng
    Luo, Renbo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 675 - 687
  • [7] Lightweight multi-scale difference network for remote sensing building extraction
    Li G.
    Wu H.
    Dong C.
    Liu Y.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2023, 31 (22): : 3371 - 3382
  • [8] Multi-scale Residual Network for Building Extraction from Satellite Remote Sensing Images
    Hou, Xin
    Wang, Pu
    An, Wei
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1348 - 1351
  • [9] Building Extraction in Multitemporal High-Resolution Remote Sensing Imagery Using a Multifeature LSTM Network
    Wang, Yuhan
    Gu, Lingjia
    Li, Xiaofeng
    Ren, Ruizhi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (09) : 1645 - 1649
  • [10] B-FGC-Net: A Building Extraction Network from High Resolution Remote Sensing Imagery
    Wang, Yong
    Zeng, Xiangqiang
    Liao, Xiaohan
    Zhuang, Dafang
    REMOTE SENSING, 2022, 14 (02)