Pre-trained language models for keyphrase prediction: A review

被引:1
|
作者
Umair, Muhammad [1 ]
Sultana, Tangina [1 ,2 ]
Lee, Young-Koo [1 ]
机构
[1] Kyung Hee Univ, Dept Comp Sci & Engn, Global Campus, Yongin, South Korea
[2] Hajee Mohammad Danesh Sci & Technol Univ, Dept Elect & Commun Engn, Dinajpur, Bangladesh
来源
ICT EXPRESS | 2024年 / 10卷 / 04期
关键词
Keyphrases; Keyphrase extraction; Keyphrase generation; Pre-trained language models; Natural language processing; Large language models; Review; EXTRACTION;
D O I
10.1016/j.icte.2024.05.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Keyphrase Prediction (KP) is essential for identifying keyphrases in a document that can summarize its content. However, recent Natural Language Processing (NLP) advances have developed more efficient KP models using deep learning techniques. The limitation of a comprehensive exploration jointly both keyphrase extraction and generation using pre-trained language models spotlights a critical gap in the literature, compelling our survey paper to bridge this deficiency and offer a unified and in-depth analysis to address limitations in previous surveys. This paper extensively examines the topic of pre-trained language models for keyphrase prediction (PLM-KP), which are trained on large text corpora via different learning (supervisor, unsupervised, semi-supervised, and self-supervised) techniques, to provide respective insights into these two types of tasks in NLP, precisely, Keyphrase Extraction (KPE) and Keyphrase Generation (KPG). We introduce appropriate taxonomies for PLM-KPE and KPG to highlight these two main tasks of NLP. Moreover, we point out some promising future directions for predicting keyphrases. (c) 2024 The Author(s). Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:871 / 890
页数:20
相关论文
共 50 条
  • [1] Addressing Extraction and Generation Separately: Keyphrase Prediction With Pre-Trained Language Models
    Liu, Rui
    Lin, Zheng
    Wang, Weiping
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2021, 29 : 3180 - 3191
  • [2] LMRank: Utilizing Pre-Trained Language Models and Dependency Parsing for Keyphrase Extraction
    Giarelis, Nikolaos
    Karacapilidis, Nikos
    IEEE ACCESS, 2023, 11 : 71459 - 71471
  • [3] A Survey on Recent Advances in Keyphrase Extraction from Pre-trained Language Models
    Song, Mingyang
    Feng, Yi
    Jing, Liping
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 2153 - 2164
  • [4] Pre-Trained Language Models and Their Applications
    Wang, Haifeng
    Li, Jiwei
    Wu, Hua
    Hovy, Eduard
    Sun, Yu
    ENGINEERING, 2023, 25 : 51 - 65
  • [5] Annotating Columns with Pre-trained Language Models
    Suhara, Yoshihiko
    Li, Jinfeng
    Li, Yuliang
    Zhang, Dan
    Demiralp, Cagatay
    Chen, Chen
    Tan, Wang-Chiew
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 1493 - 1503
  • [6] LaoPLM: Pre-trained Language Models for Lao
    Lin, Nankai
    Fu, Yingwen
    Yang, Ziyu
    Chen, Chuwei
    Jiang, Shengyi
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 6506 - 6512
  • [7] PhoBERT: Pre-trained language models for Vietnamese
    Dat Quoc Nguyen
    Anh Tuan Nguyen
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 1037 - 1042
  • [8] Deciphering Stereotypes in Pre-Trained Language Models
    Ma, Weicheng
    Scheible, Henry
    Wang, Brian
    Veeramachaneni, Goutham
    Chowdhary, Pratim
    Sung, Alan
    Koulogeorge, Andrew
    Wang, Lili
    Yang, Diyi
    Vosoughi, Soroush
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023), 2023, : 11328 - 11345
  • [9] Knowledge Rumination for Pre-trained Language Models
    Yao, Yunzhi
    Wang, Peng
    Mao, Shengyu
    Tan, Chuanqi
    Huang, Fei
    Chen, Huajun
    Zhang, Ningyu
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 3387 - 3404
  • [10] HinPLMs: Pre-trained Language Models for Hindi
    Huang, Xixuan
    Lin, Nankai
    Li, Kexin
    Wang, Lianxi
    Gan, Suifu
    2021 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2021, : 241 - 246