Modeling infectious respiratory diseases considering fear effect and latent period

被引:2
|
作者
Mangal, Shiv [1 ,2 ]
Misra, O. P. [1 ]
Dhar, Joydip [3 ]
机构
[1] Jiwaji Univ, Sch Math & Allied Sci, Gwalior 474011, MP, India
[2] Govt PG Coll, Dept Math, Bina 470113, MP, India
[3] ABV Indian Inst Informat Technol & Management, Dept Appl Sci, Gwalior 474015, MP, India
来源
关键词
Respiratory diseases; Tuberculosis; Fear effect; Hopf bifurcation; Parameter estimation; MATHEMATICAL-THEORY; HOPF-BIFURCATION; EPIDEMIC MODEL; DYNAMICS;
D O I
10.1016/j.rico.2024.100439
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces a fractional-order (FO) SEIR. epidemic model for respiratory diseases considering a non-human class P(t) for pathogens to study the effects of fear and awareness programs on disease dynamics. Further, using the basic reproduction number R-0(alpha), the criteria for the extinction or persistence of the disease is established. Also, the conditions for Hopf bifurcation are derived, considering both FO (alpha) and rate of pathogens eta as the bifurcation parameters. In addition, a detailed numerical simulation is performed to substantiate our theoretical results. The study of transmission dynamics of Tuberculosis (TB), a particular example of respiratory disease, is carried out in reference to the United States (US). Finally, we have estimated model parameters with the help of actual TB data from the US and then predicted the TB dynamics and disease control. It is pointed out that the fractional order can reduce the complexity of the model and better predict the dynamics of TB in the US than the integer order.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A nonparametric estimation for infectious diseases with latent period
    Wang, Wensheng
    Zhou, Hui
    Zhu, Anwei
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (19) : 6701 - 6718
  • [2] Modeling Spatial Spread of Infectious Diseases with a Fixed Latent Period in a Spatially Continuous Domain
    Jing Li
    Xingfu Zou
    Bulletin of Mathematical Biology, 2009, 71 : 2048 - 2079
  • [3] Modeling Spatial Spread of Infectious Diseases with a Fixed Latent Period in a Spatially Continuous Domain
    Li, Jing
    Zou, Xingfu
    BULLETIN OF MATHEMATICAL BIOLOGY, 2009, 71 (08) : 2048 - 2079
  • [5] Infectious respiratory diseases
    不详
    MEDIZINISCHE WELT, 1995, : 31 - &
  • [6] Respiratory and general infectious diseases
    Trieloff, I
    Schmidt, M
    MEDIZINISCHE WELT, 1995, : 5 - &
  • [7] Occupational infectious respiratory diseases
    Coman, M.
    Lodde, B.
    Dewitte, J. D.
    ARCHIVES DES MALADIES PROFESSIONNELLES ET DE L ENVIRONNEMENT, 2008, 69 (04) : 564 - 573
  • [8] Antibiotics and Infectious Respiratory Diseases
    Di Gennaro, Francesco
    Gualano, Gina
    Palmieri, Fabrizio
    ANTIBIOTICS-BASEL, 2022, 11 (07):
  • [9] Occupational infectious respiratory diseases
    Coman, M.
    Lodde, B.
    Dewitte, J. D.
    REVUE DES MALADIES RESPIRATOIRES, 2007, 24 (10) : 1341 - 1350
  • [10] Latent period and infectious period: Useful concepts or vague notions
    Ferrandino, F. J.
    PHYTOPATHOLOGY, 2012, 102 (07) : 38 - 38