Extending a High-Performance Prover to Higher-Order Logic

被引:2
|
作者
Vukmirovic, Petar [1 ]
Blanchette, Jasmin [1 ,2 ]
Schulz, Stephan [3 ]
机构
[1] Vrije Univ Amsterdam, Amsterdam, Netherlands
[2] Univ Lorraine, LORIA, INRIA, CNRS, Nancy, France
[3] DHBW Stuttgart, Stuttgart, Germany
基金
欧洲研究理事会;
关键词
FORMAL VERIFICATION;
D O I
10.1007/978-3-031-30820-8_10
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Most users of proof assistants want more proof automation. Some proof assistants discharge goals by translating them to first-order logic and invoking an efficient prover on them, but much is lost in translation. Instead, we propose to extend first-order provers with native support for higher-order features. Building on our extension of E to lambda-free higher-order logic, we extend E to full higher-order logic. The result is the strongest prover on benchmarks exported from a proof assistant.
引用
收藏
页码:111 / 129
页数:19
相关论文
共 50 条
  • [1] Extending a brainiac prover to lambda-free higher-order logic
    Petar Vukmirović
    Jasmin Blanchette
    Simon Cruanes
    Stephan Schulz
    International Journal on Software Tools for Technology Transfer, 2022, 24 : 67 - 87
  • [2] Extending a Brainiac Prover to Lambda-Free Higher-Order Logic
    Vukmirovic, Petar
    Blanchette, Jasmin Christian
    Cruanes, Simon
    Schulz, Stephan
    TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, PT I, 2019, 11427 : 192 - 210
  • [3] Extending a brainiac prover to lambda-free higher-order logic
    Vukmirovic, Petar
    Blanchette, Jasmin
    Cruanes, Simon
    Schulz, Stephan
    INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR TECHNOLOGY TRANSFER, 2022, 24 (01) : 67 - 87
  • [4] Implementing a program logic of objects in a higher-order logic theorem prover
    Hofmann, M
    Tang, F
    THEOREM PROVING IN HIGHER ORDER LOGICS, PROCEEDINGS, 2000, 1869 : 268 - 282
  • [5] Extending SMT Solvers to Higher-Order Logic
    Barbosa, Haniel
    Reynolds, Andrew
    El Ouraoui, Daniel
    Tinelli, Cesare
    Barrett, Clark
    AUTOMATED DEDUCTION, CADE 27, 2019, 11716 : 35 - 54
  • [6] The Higher-Order Prover Leo-II
    Christoph Benzmüller
    Nik Sultana
    Lawrence C. Paulson
    Frank Theiß
    Journal of Automated Reasoning, 2015, 55 : 389 - 404
  • [7] The Higher-Order Prover Leo-III
    Steen, Alexander
    Benzmueller, Christoph
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 2937 - 2938
  • [8] The Higher-Order Prover LEO-II
    Benzmueller, Christoph
    Sultana, Nik
    Paulson, Lawrence C.
    Theiss, Frank
    JOURNAL OF AUTOMATED REASONING, 2015, 55 (04) : 389 - 404
  • [9] The Higher-Order Prover Leo-III
    Steen, Alexander
    Benzmueller, Christoph
    AUTOMATED REASONING, IJCAR 2018, 2018, 10900 : 108 - 116
  • [10] LEO-II -: A cooperative automatic theorem prover for classical higher-order logic
    Benzmueller, Christoph
    Paulson, Lawrence C.
    Theiss, Frank
    Fietzke, Arnaud
    AUTOMATED REASONING, PROCEEDINGS, 2008, 5195 : 162 - +