A lightweight multi-scale multi-angle dynamic interactive transformer-CNN fusion model for 3D medical image segmentation

被引:1
|
作者
Hua, Xin [1 ]
Du, Zhijiang [1 ]
Yu, Hongjian [1 ]
Ma, Jixin [1 ]
Zheng, Fanjun [2 ]
Zhang, Chen [2 ]
Lu, Qiaohui [2 ]
Zhao, Hui [2 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot Technol & Syst, Harbin 15000, Heilongjiang, Peoples R China
[2] Chinese Peoples Liberat Army PLA Gen Hosp, Beijing 100853, Peoples R China
关键词
3D Medical image segmentation; Light-weight; Convolutional Neural Network; Transformer;
D O I
10.1016/j.neucom.2024.128417
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Combining Convolutional Neural Network(CNN) and Transformer has become one of the mainstream methods for three-dimensional (3D) medical image segmentation. However, the complexity and diversity of target forms in 3D medical images require models to capture complex feature information for segmentation, resulting in an excessive number of parameters which are not conducive to training and deployment. Therefore, we have developed a lightweight 3D multi-target semantic segmentation model. In order to enhance contextual texture connections and reinforce the expression of detailed feature information, we designed a multi-scale and multiangle feature interaction module to enhance feature representation by interacting multi-scale features from different perspectives. To address the issue of attention collapse in Transformers, leading to the neglect of other detailed feature learning, we utilized local features as dynamic parameters to interact with global features, dynamically grouping and learning critical features from global features, thereby enhancing the model's ability to learn detailed features. While ensuring the segmentation capability of the model, we aimed to keep the model lightweight, resulting in a total of 9.63 M parameters. Extensive experiments were conducted on public datasets ACDC and Brats2018, as well as a private dataset, Temporal Bone CT. The results indicate that our proposed model is more competitive compared to the latest techniques in 3D medical image segmentation.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] MS-TCNet: An effective Transformer-CNN combined network using multi-scale feature learning for 3D medical image segmentation
    Ao, Yu
    Shi, Weili
    Ji, Bai
    Miao, Yu
    He, Wei
    Jiang, Zhengang
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170
  • [2] Multi-Scale Orthogonal Model CNN-Transformer for Medical Image Segmentation
    Zhou, Wuyi
    Zeng, Xianhua
    Zhou, Mingkun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (10)
  • [3] An effective multi-scale interactive fusion network with hybrid Transformer and CNN for smoke image segmentation
    Li, Kang
    Yuan, Feiniu
    Wang, Chunmei
    PATTERN RECOGNITION, 2025, 159
  • [4] MFLUnet: multi-scale fusion lightweight Unet for medical image segmentation
    Cao, Dianlei
    Zhang, Rui
    Zhang, Yunfeng
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (10): : 5574 - 5591
  • [5] LTMSegnet: Lightweight multi-scale medical image segmentation combining Transformer and MLP
    Huang, Xin
    Tang, Hongxiang
    Ding, Yan
    Li, Yuanyuan
    Zhu, Zhiqin
    Yang, Pan
    Computers in Biology and Medicine, 2024, 183
  • [6] Lightweight multi-scale dynamic selection network for medical image segmentation
    Dong, Xue-Mei
    Sun, Yu
    Wang, Lili
    INFORMATION SCIENCES, 2024, 677
  • [7] Hybrid transformer-CNN with boundary-awareness network for 3D medical image segmentation
    Jianfei He
    Canhui Xu
    Applied Intelligence, 2023, 53 : 28542 - 28554
  • [8] Hybrid transformer-CNN with boundary-awareness network for 3D medical image segmentation
    He, Jianfei
    Xu, Canhui
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28542 - 28554
  • [9] Lightweight medical image segmentation network with multi-scale feature-guided fusion
    Zhu, Zhiqin
    Yu, Kun
    Qi, Guanqiu
    Cong, Baisen
    Li, Yuanyuan
    Li, Zexin
    Gao, Xinbo
    Computers in Biology and Medicine, 2024, 182
  • [10] MAXFormer: Enhanced transformer for medical image segmentation with multi-attention and multi-scale features fusion
    Liang, Zhiwei
    Zhao, Kui
    Liang, Gang
    Li, Siyu
    Wu, Yifei
    Zhou, Yiping
    KNOWLEDGE-BASED SYSTEMS, 2023, 280