Experimental investigation of explosion hazard from lithium-ion battery thermal runaway effluent gas

被引:0
|
作者
Sauer, Nathaniel G. [1 ]
Gaudet, Benjamin [2 ]
Barowy, Adam [1 ]
机构
[1] Fire Safety Res Inst, 6200 Old Dobbin Lane,Suite 150, Columbia, MD 21045 USA
[2] UL Solut, 333 Pfingsten Rd, Northbrook, IL 60062 USA
关键词
Lithium-ion battery; Explosion; Hazard analysis; Gas mixtures;
D O I
10.1016/j.fuel.2024.132818
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Fire and explosion hazards present a serious concern to the widespread adoption of battery technology. This work experimentally investigates the explosion hazards associated with synthesized lithium-ion battery thermal runaway effluent gases (TREG) in an enclosed garage space typical of modern construction in North America. Pressure rise inside the compartment is examined using high-frequency piezoelectric pressure transducers. Data on overpressure and impulse is compared with known ranges for structural damage and bodily injury thresholds and calculation methods for maximum overpressure. Data on time-resolved overpressure are compared with a vented explosion model from literature. These comparisons support that existing models for maximum overpressure and time-resolved pressure rise remain valid for the examined synthesized TREG. Correlations are developed between gas volume and measured impulse and overpressure. An extension of this analysis with values of TREG production from literature supports that pressures measured in these experiments can be generated from ignition of gases released from batteries sized in the range of 3300 W h to 80 500 W h.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] In situ Raman investigation on gas components and explosion risk of thermal runaway emission from lithium-ion battery
    Zhang, Qingsong
    Liu, Tiantian
    Hao, Chaolong
    Qu, Yirun
    Niu, Jianghao
    Wang, Qiong
    Chen, Da
    JOURNAL OF ENERGY STORAGE, 2022, 56
  • [2] Experimental Investigation on Thermal Runaway Propagation in Lithium-Ion Battery Cell Stack
    Hoelle, Sebastian
    Haberl, Simon
    Rheinfeld, Alexander
    Osswald, Patrick
    Zimmermann, Sascha
    Hinrichsen, Olaf
    2022 IEEE/AIAA TRANSPORTATION ELECTRIFICATION CONFERENCE AND ELECTRIC AIRCRAFT TECHNOLOGIES SYMPOSIUM (ITEC+EATS 2022), 2022, : 1174 - 1179
  • [3] Experimental study of explosion parameters of hybrid mixture caused by thermal runaway of lithium-ion battery
    Zhou, Wei
    Li, Gang
    Zhao, Haoran
    Zhang, Xiupeng
    Marquez, Jazmine Aiya D.
    Wang, Qingsheng
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 178 : 872 - 880
  • [4] Experimental study on the thermal runaway hazard quantification and its assessment parameters in the lithium-ion battery
    Hu, Xiangyu
    Zhu, Guoqing
    Liu, Tong
    Cui, Shaoqi
    Guo, Xianyang
    Chen, Xi
    JOURNAL OF ENERGY STORAGE, 2024, 101
  • [5] Experimental investigation on suppression of thermal runaway propagation of lithium-ion battery by intermittent spray
    Zhang, Lin
    Duan, Qiangling
    Xu, Jiajia
    Meng, Xiangdong
    Sun, Jinhua
    Wang, Qingsong
    JOURNAL OF ENERGY STORAGE, 2023, 58
  • [6] Experimental and simulation investigation of thermal runaway propagation in lithium-ion battery pack systems
    Zhang, Xiong
    Yao, Jian
    Zhu, Linpei
    Wu, Jun
    Wei, Dan
    Wang, Qingquan
    Chen, Hu
    Li, Kaixiang
    Gao, Zhenyu
    Xu, Chengshan
    Feng, Xuning
    JOURNAL OF ENERGY STORAGE, 2024, 77
  • [7] Experimental investigation on the venting gas of cell-to-pack lithium-ion battery module during thermal runaway
    Zhang, Chenyu
    Wang, Shilin
    Liu, Zhaoyang
    Li, Yitong
    Sun, Zida
    Jing, Huigen
    Gao, Xiangxiang
    Hu, Wanji
    Yang, Haoran
    Xu, Chengshan
    Li, Yang
    Sun, Junli
    Wang, Huaibin
    Feng, Xuning
    JOURNAL OF ENERGY STORAGE, 2024, 88
  • [8] Thermal runaway induced gas hazard for cell-to-pack (CTP) lithium-ion battery pack
    Peng, Yong
    Wang, Huaibin
    Jin, Changyong
    Huang, Wensheng
    Zhang, Fangshu
    Li, Bo
    Ju, Wenbin
    Xu, Chengshan
    Feng, Xuning
    Ouyang, Minggao
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [9] In-situ explosion limit analysis and hazards research of vent gas from lithium-ion battery thermal runaway
    Zhang, Qingsong
    Niu, Jianghao
    Yang, Juan
    Liu, Tiantian
    Bao, Fangwei
    Wang, Qiong
    JOURNAL OF ENERGY STORAGE, 2022, 56
  • [10] Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery
    Liu, Jingjing
    Wang, Zhirong
    Gong, Junhui
    Liu, Kai
    Wang, Hao
    Guo, Linsheng
    MATERIALS, 2017, 10 (03):