Hot Deformation Behavior and Microstructure Evolution of a Graphene/Copper Composite

被引:0
|
作者
Li, Tiejun [1 ]
Lu, Ruiyu [1 ]
Cao, Yuankui [1 ]
Liu, Bicheng [1 ]
Fu, Ao [1 ]
Liu, Bin [1 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
关键词
graphene/copper composite; hot deformation behavior; dynamic recrystallization; microstructure; PROCESSING MAPS; FLOW;
D O I
10.3390/ma17164010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene/copper composites are promising in electronic and energy fields due to their superior conductivity, but microstructure control during thermal mechanical processing (TMP) remains a crucial issue for the manufacturing of high-performance graphene/copper composites. In this study, the hot deformation behavior of graphene/copper composites was investigated by isothermal compression tests at deformation temperatures of 700 similar to 850 degrees C and strain rates of 0.01 similar to 10 s(-1), and a constitutive equation based on the Arrhenius model and hot processing map was established. Results demonstrate that the deformation mechanism of the graphene/copper composites mainly involves dynamic recrystallization (DRX), and such DRX-mediated deformation behavior can be accurately described by the established Arrhenius model. In addition, it was found that the strain rate has a stronger impact on the DRX grain size than the deformation temperature. The optimum deformation temperature and strain rate were determined to be 800 degrees C and 1 s(-1), respectively, with which a uniform microstructure with fine grains can be obtained.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Deformation behavior and microstructure evolution of graphene/copper laminated composites
    Zhang, Xiaohui
    Liu, Yazhou
    Zhang, Yi
    Zhou, Meng
    Geng, Yongfeng
    Song, Xiaoguo
    Xiong, Ding- Bang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 911
  • [2] Hot Deformation Behavior and Microstructure Evolution of a TiBw/Near -Ti Composite with Fine Matrix Microstructure
    Zhang, Changjiang
    Lian, Yuzhou
    Chen, Yanfei
    Sun, Yonggang
    Zhang, Shuzhi
    Feng, Hong
    Zhou, Yawei
    Cao, Peng
    METALS, 2019, 9 (04):
  • [3] Hot deformation behavior and microstructure of a 0.5 wt% graphene nanoplatelet reinforced aluminum composite
    Lou, Shumei
    Li, Xin
    Guo, Guangxin
    Ran, Lingwei
    Liu, Yongqiang
    Zhang, Pingping
    Su, Chunjian
    SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS, 2022, 29 (01) : 97 - 112
  • [4] Hot deformation behavior and microstructure evolution of carbon nanotube/7055Al composite
    Ma, K.
    Liu, Z.Y.
    Zhang, X.X.
    Xiao, B.L.
    Ma, Z.Y.
    Journal of Alloys and Compounds, 2022, 854
  • [5] Hot deformation behavior and microstructure evolution of carbon nanotube/7055Al composite
    Ma, K.
    Liu, Z. Y.
    Zhang, X. X.
    Xiao, B. L.
    Ma, Z. Y.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 854
  • [6] Hot deformation behavior and microstructure evolution of NiAl-9HfO2 composite
    Liu, Dekai
    Lu, Zhen
    Yu, Jianxin
    Shi, Chengcheng
    Xiao, Han
    Liu, Wei
    Jiang, Shaosong
    INTERMETALLICS, 2021, 139
  • [7] Microstructure Evolution and Hot Deformation Behavior of a CuNiSn Alloy
    Jiang, Yexin
    Wang, Xu
    Li, Zhou
    Xiao, Zhu
    Sheng, Xiaofei
    Jiang, Hongyun
    Cai, Gengsheng
    Zhang, Xianwei
    PROCESSES, 2021, 9 (03) : 1 - 16
  • [8] The role of graphene interlayer slipping on the deformation behavior of graphene/copper composite
    Yu, Jiani
    Wang, Lidong
    Shao, Bin
    Zong, Yingying
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 988
  • [9] Hot Deformation Behavior and Microstructure Evolution of the Maraging Stainless Steel
    Wei, Hao
    Zhang, Weina
    Zhang, Huimin
    Chen, Zejin
    Yan, Xinyue
    Cao, Guangming
    STEEL RESEARCH INTERNATIONAL, 2024,
  • [10] Hot Deformation Behavior and Microstructure Evolution of 2219/TiB2 Al-matrix Composite
    Jing, Wang
    Qiang, Liang
    Ping, Li
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2020, 23 (02):