Efficient numerical solution of linear Fredholm integro-differential equations via backward finite difference and Nyström methods

被引:0
|
作者
Dida, Ridha [1 ]
Guebbai, Hamza [1 ]
Segni, Sami [1 ]
机构
[1] Univ 8 Mai 1945 Guelma, Fac Math & Informat & Sci Matiere, Lab Math Appl & Modelisat, BP 401, Guelma 24000, Algeria
关键词
Fredholm integro-differential equation; Nystr & ouml; m method; Backward finite difference;
D O I
10.1007/s12190-024-02246-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a novel numerical approach for solving linear Fredholm integro-differential equations. We integrate the backward finite difference method with the Nystr & ouml;m method to reduce the system size by half compared to the method proposed by Tair et al. (J. Appl. Math. Comput. Mech. 20(3):53-64, 2021). This reduction enhances computational efficiency and is particularly advantageous for large integration intervals. Our method ensures convergence by constructing a new norm for RN+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>{N+1}$$\end{document}. Numerical tests demonstrate the superiority of our method in terms of execution time and accuracy. The results contribute to the ongoing efforts in solving integro-differential equations more effectively, offering a robust tool for applications in various scientific and engineering domains.
引用
收藏
页码:415 / 428
页数:14
相关论文
共 50 条