Kramers-Wannier Duality and Random-Bond Ising Model

被引:0
|
作者
Song, Chaoming [1 ]
机构
[1] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA
关键词
Kramers-Wannier duality; Random-Bond Ising Model; disorder operator; zeta function; CRYSTAL STATISTICS; FRUSTRATION; OPERATORS; FERMIONS; ORDER;
D O I
10.3390/e26080636
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new combinatorial approach to the Ising model incorporating arbitrary bond weights on planar graphs. In contrast to existing methodologies, the exact free energy is expressed as the determinant of a set of ordered and disordered operators defined on a planar graph and the corresponding dual graph, respectively, thereby explicitly demonstrating the Kramers-Wannier duality. The implications of our derived formula for the Random-Bond Ising Model are further elucidated.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] The Ising Model: Kramers-Wannier Duality and Normal Factor Graphs
    Al-Bashabsheh, Ali
    Vontobel, Pascal O.
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 2266 - 2270
  • [2] TO THE TOPOLOGY OF KRAMERS-WANNIER DUALITY
    MISIRPASHAEV, TS
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (16): : 2755 - 2772
  • [3] KRAMERS-WANNIER DUALITY AND TUTTE POLYNOMIALS
    Kazakov, A. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 220 (02) : 1304 - 1314
  • [5] Kramers-Wannier approximation for the 3D Ising model
    Okunishi, K
    Nishino, T
    PROGRESS OF THEORETICAL PHYSICS, 2000, 103 (03): : 541 - 548
  • [6] Kramers-Wannier duality and worldline representation for the SU(2) principal chiral model
    Gattringer, Christof
    Goeschl, Daniel
    Marchis, Carlotta
    PHYSICS LETTERS B, 2018, 778 : 435 - 441
  • [7] (Non-)abelian Kramers-Wannier duality and topological field theory
    Severa, P
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (05):
  • [8] A Factor-Graph Approach to Algebraic Topology, With Applications to Kramers-Wannier Duality
    Al-Bashabsheh, Ali
    Vontobel, Pascal O.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (12) : 7488 - 7510
  • [9] Random-bond antiferromagnetic Ising model in a field
    d'Auriac, Jean-Christian Angles
    Igloi, Ferenc
    PHYSICAL REVIEW E, 2022, 106 (03)
  • [10] Kramers-Wannier duality from conformal defects -: art. no. 070601
    Fröhlich, J
    Fuchs, J
    Runkel, I
    Schweigert, C
    PHYSICAL REVIEW LETTERS, 2004, 93 (07) : 070601 - 1