Bochner-Riesz means at the critical index: weighted and sparse bounds

被引:0
|
作者
Beltran, David [1 ]
Roos, Joris [2 ]
Seeger, Andreas [3 ]
机构
[1] Univ Valencia, Dept Anal Matemat, Dr Moliner 50, Burjassot 46100, Spain
[2] Univ Massachusetts Lowell, Dept Math & Stat, Lowell, MA 01854 USA
[3] Univ Wisconsin Madison, Dept Math, 480 Lincoln Dr, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
42B15; 42B20; 42B25; SQUARE FUNCTION; INEQUALITIES; MULTIPLIERS; OPERATORS;
D O I
10.1007/s00208-024-02962-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Bochner-Riesz means on weighted L-p spaces, at the critical index lambda(p)=d(1/p-1/2)-1/2. For every A(1)-weight we obtain an extension of Vargas' weak type (1, 1) inequality in some range of p>1. To prove this result we establish new endpoint results for sparse domination. These are almost optimal in dimension d=2; partial results as well as conditional results are proved in higher dimensions. For the means of index lambda(& lowast;)=d-1/2d+2 we prove fully optimal sparse bounds.
引用
收藏
页码:2337 / 2383
页数:47
相关论文
共 50 条