Existence and uniqueness of periodic pseudospherical surfaces emanating from Cauchy problems

被引:1
|
作者
Mutlubas, Nilay Duruk [1 ]
Freire, Igor Leite [2 ,3 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[2] Loughborough Univ, Dept Math Sci, Epinal Way, Loughborough LE11 3TU, England
[3] Univ Fed Sao Carlos, Dept Matemat, Rodovia Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, Brazil
基金
瑞典研究理事会; 巴西圣保罗研究基金会;
关键词
equations describing pseudospherical surfaces; first fundamental form; second fundamental form; Cauchy problems; Kato's approach; 3RD-ORDER DIFFERENTIAL-EQUATIONS; LOCAL ISOMETRIC IMMERSIONS; CONSERVATION-LAWS; INTEGRABILITY;
D O I
10.1098/rspa.2023.0670
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study implications and consequences of well-posed solutions of Cauchy problems of a Novikov equation describing pseudospherical surfaces. We show that if the co-frame of dual one-forms satisfies certain conditions for a given periodic initial datum, then there exist exactly two families of periodic one-forms satisfying the structural equations for a surface. Each pair then defines a metric of constant Gaussian curvature and a corresponding Levi-Civita connection form. We prove the existence of universal connection forms giving rise to second fundamental forms compatible with the metric. The main tool to prove our geometrical results is the Kato's semi-group approach, which is used to establish well-posedness of solutions of the Cauchy problem involved and ensure C 1 regularity for the first fundamental form and the Levi-Civita connection form.
引用
收藏
页数:27
相关论文
共 50 条