A General Framework for Nonconvex Sparse Mean-CVaR Portfolio Optimization Via ADMM

被引:0
|
作者
Sun, Ke-Xin [1 ]
Wu, Zhong-Ming [1 ]
Wan, Neng [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Management Sci & Engn, Nanjing 210000, Jiangsu, Peoples R China
[2] Chinese Univ Hong Kong, Ctr Math Artificial Intelligence, Dept Math, Hong Kong 999077, Peoples R China
关键词
Portfolio optimization; Mean-CVaR; Sparse regularization; Alternating direction method of multipliers; 90-10; VARIABLE SELECTION; MINIMIZATION; CONVERGENCE; PERFORMANCE; BOUNDS; MODEL;
D O I
10.1007/s40305-024-00551-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents a general framework for addressing sparse portfolio optimization problems using the mean-CVaR (Conditional Value-at-Risk) model and regularization techniques. The framework incorporates a non-negative constraint to prevent the portfolio from being too heavily weighted in certain assets. We propose a specific ADMM (alternating directional multiplier method) for solving the model and provide a subsequential convergence analysis for theoretical integrity. To demonstrate the effectiveness of our framework, we consider the & ell;1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document} and SCAD (smoothly clipped absolute deviation) penalties as notable instances within our unified framework. Additionally, we introduce a novel synthesis of the CVaR-based model with & ell;1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}/& ell;2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _2$$\end{document} regularization. We explore the subproblems of ADMM associated with CVaR and the presented regularization functions, employing the gradient descent method to solve the subproblem related to CVaR and the proximal operator to evaluate the subproblems with respect to penalty functions. Finally, we evaluate the proposed framework through a series of parametric and out-of-sample experiments, which shows that the proposed framework can achieve favorable out-of-sample performance. We also compare the performance of the proposed nonconvex penalties with that of convex ones, highlighting the advantages of nonconvex penalties such as improved sparsity and better risk control.
引用
收藏
页码:1022 / 1047
页数:26
相关论文
共 50 条
  • [1] Cutting plane algorithms for mean-CVaR portfolio optimization with nonconvex transaction costs
    Takano Y.
    Nanjo K.
    Sukegawa N.
    Mizuno S.
    Computational Management Science, 2015, 12 (2) : 319 - 340
  • [2] On cardinality constrained mean-CVaR portfolio optimization
    Cheng, Runze
    Gao, Jianjun
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1074 - 1079
  • [3] Mean-CVaR portfolio selection: A nonparametric estimation framework
    Yao, Haixiang
    Li, Zhongfei
    Lai, Yongzeng
    COMPUTERS & OPERATIONS RESEARCH, 2013, 40 (04) : 1014 - 1022
  • [4] Multiperiod Mean-CVaR Portfolio Selection
    Cui, Xiangyu
    Shi, Yun
    MODELLING, COMPUTATION AND OPTIMIZATION IN INFORMATION SYSTEMS AND MANAGEMENT SCIENCES - MCO 2015, PT 1, 2015, 359 : 293 - 304
  • [5] Distributionally Robust Mean-CVaR Portfolio Optimization with Cardinality Constraint
    Wang, Shuang
    Pang, Li-Ping
    Wang, Shuai
    Zhang, Hong-Wei
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023,
  • [6] Mean-CVaR Portfolio Optimization Models based on Chance Theory
    Chennaf, Souad
    Ben Amor, Jaleleddine
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2023,
  • [7] A Personalized Mean-CVaR Portfolio Optimization Model for Individual Investment
    Yu, Chunxia
    Liu, Yuru
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [8] A General Framework for Nonconvex Sparse Mean-CVaR Portfolio Optimization Via ADMMA general framework for Nonconvex Sparse Mean-CVaR Portfolio ⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cdots $$\end{document}K.-X. Sun et al.
    Ke-Xin Sun
    Zhong-Ming Wu
    Neng Wan
    Journal of the Operations Research Society of China, 2024, 12 (4) : 1022 - 1047
  • [9] Dynamic Mean-CVaR Portfolio Optimization in Continuous-time
    Gao, Jianjun
    Xiong, Yan
    2013 10TH IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2013, : 1550 - 1555
  • [10] Optimal Dynamic Portfolio with Mean-CVaR Criterion
    Li, Jing
    Xu, Mingxin
    RISKS, 2013, 1 (03): : 119 - 147