A hierarchy of WZW models related to super Poisson-Lie T-duality

被引:2
|
作者
Eghbali, Ali [1 ]
Rezaei-Aghdam, Adel [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Fac Basic Sci, Dept Phys, Tabriz 53714161, Iran
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 09期
基金
美国国家科学基金会;
关键词
SIGMA-MODEL; CLASSIFICATION;
D O I
10.1140/epjc/s10052-024-13297-1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Motivated by super Poisson-Lie (PL) symmetry of the Wess-Zumino-Witten (WZW) model based on the (C3+A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C<^>3+A)$$\end{document} Lie supergroup of our previous work (Eghbali et al., in J High Energy Phys 07:134, 2013. arXiv:1303.4069 [hep-th]), we first obtain and classify all Drinfeld superdoubles (DSDs) generated by the Lie superbialgebra structures on the (C3+A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathscr {C}}<^>3+ {\mathscr {A}})$$\end{document} Lie superalgebra as a theorem. Then, introducing a general formulation we find the conditions under which a two-dimensional sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-model may be equivalent to a WZW model. With the help of this formulation and starting the super PL symmetric (C3+A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C<^>3+A)$$\end{document} WZW model, we get a hierarchy of WZW models related to super PL T-duality, in such a way that it is different from the super PL T-plurality, because the DSDs are, in this process, non-isomorphic. The most interesting indication of this work is that the (C3+A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C<^>3+A)$$\end{document} WZW model does remain invariant under the super PL T-duality transformation, that is, the model is super PL self-dual.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Poisson-Lie T-duality
    Klimcik, C
    NUCLEAR PHYSICS B, 1996, : 116 - 121
  • [2] On quantum Poisson-Lie T-duality of WZNW models
    Yuho Sakatani
    Yuji Satoh
    Journal of High Energy Physics, 2024
  • [3] On quantum Poisson-Lie T-duality of WZNW models
    Sakatani, Yuho
    Satoh, Yuji
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (01)
  • [4] Poisson-Lie T-duality of WZW model via current algebra deformation
    Bascone, Francesco
    Pezzella, Franco
    Vitale, Patrizia
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (09)
  • [5] Poisson-Lie T-duality of WZW model via current algebra deformation
    Francesco Bascone
    Franco Pezzella
    Patrizia Vitale
    Journal of High Energy Physics, 2020
  • [6] Poisson-Lie T-duality and supersymmetry
    Sfetsos, K
    NUCLEAR PHYSICS B, 1997, : 302 - 309
  • [7] α′-Corrected Poisson-Lie T-Duality
    Hassler, Falk
    Rochais, Thomas
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2020, 68 (09):
  • [8] Poisson-Lie T-duality for quasitriangular Lie bialgebras
    Beggs, EJ
    Majid, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 220 (03) : 455 - 488
  • [9] The Poisson-Lie T-duality and zero modes
    Klimcík, C
    Parkhomenko, SE
    THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 139 (03) : 834 - 845
  • [10] Quantum equivalence in Poisson-Lie T-duality
    Sfetsos, Konstadinos
    Siampos, Konstadinos
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (06):