Research Octane Number Prediction Based on Feature Selection and Multi-Model Fusion

被引:0
|
作者
Gu, Junlin [1 ]
机构
[1] Jiangsu Vocat Coll Elect & Informat, Huaian, Peoples R China
关键词
Feature selection; random forest model; support vector machine model; RON loss;
D O I
10.14569/IJACSA.2024.01503114
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The catalytic cracking-based process for lightening heavy oil yields gasoline products with sulfur and olefin contents surpassing 95%, consequently diminishing the Research Octane Number (RON) of gasoline during desulfurization and olefin reduction stages. Hence, investigating methodologies to mitigate RON loss in gasoline while maintaining effective desulfurization is imperative. This study addresses this challenge by initially performing data cleaning and augmentation, employing box plot modeling and Grubbs' test for outlier detection and removal. Subsequently, through the integration of mutual information and the Lasso method, data dimensionality is reduced, with the top 30 variables selected as primary factors. A predictive model for RON loss is then established based on these 30 variables, utilizing random forest and Support Vector Regression (SVR) models. Employing this model enables the computation of RON loss for each data sample. Comparing with existing methods, our approach could ensure a balance between effective desulfurization and mitigated RON loss in gasoline products.
引用
收藏
页码:1145 / 1152
页数:8
相关论文
共 50 条
  • [1] An effective method based on multi-model fusion for research octane number prediction
    Fu, Ningchen
    Lai, Zicheng
    Zhang, Yuping
    Ma, Yan
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (21) : 9668 - 9676
  • [2] User Intention Prediction Method Based on Hybrid Feature Selection and Stacking Multi-model Fusion
    Xu, Zhongxian
    Sun, Yuejia
    Guo, Ye
    Zhou, Zhihong
    Cheng, Yinchao
    Lin, Lin
    2022 IEEE 5TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION ENGINEERING, ICECE, 2022, : 220 - 226
  • [3] Research on Flight delay Prediction based on Multi-Model Fusion
    Mang, Chen
    Chen, Yunli
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 725 - 730
  • [4] Research on Photovoltaic Power Prediction Based on Multi-model Fusion
    Chen, Jiaqi
    Gao, Qiang
    Ji, Yuehui
    Xu, Zhao
    Liu, Junjie
    PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON NEW ENERGY AND ELECTRICAL TECHNOLOGY, ISNEET 2023, 2024, 1255 : 59 - 67
  • [5] Research on Multi-model Android Malicious Application Detection Based on Feature Fusion
    Fang, Zhan
    Liu, Jun
    Huang, Ribian
    Chen, Peng
    Li, Xin
    Chen, Xiao
    2021 4TH INTERNATIONAL CONFERENCE ON ROBOTICS, CONTROL AND AUTOMATION ENGINEERING (RCAE 2021), 2021, : 147 - 151
  • [6] Research on the Gearbox Fault Diagnosis Method Based on Multi-Model Feature Fusion
    Xie, Fengyun
    Liu, Hui
    Dong, Jiankun
    Wang, Gan
    Wang, Linglan
    Li, Gang
    MACHINES, 2022, 10 (12)
  • [7] A feature selection and multi-model fusion-based approach of predicting air quality
    Zhang, Ying
    Zhang, Rongrong
    Ma, Qunfei
    Wang, Yanhao
    Wang, Qingqing
    Huang, Zihao
    Huang, Linyan
    ISA TRANSACTIONS, 2020, 100 : 210 - 220
  • [8] Prediction of loan default based on multi-model fusion
    Li, Xingyun
    Ergu, Daji
    Zhang, Di
    Qiu, Dafeng
    Cai, Ying
    Ma, Bo
    8TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2020 & 2021): DEVELOPING GLOBAL DIGITAL ECONOMY AFTER COVID-19, 2022, 199 : 757 - 764
  • [9] Atmospheric Visibility Prediction Based on Multi-Model Fusion
    Yan Shiyang
    Zheng Yu
    Chen Yixuan
    Li Baoren
    2021 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2021, 12076
  • [10] Power Grid Material Demand Forecasting Based on Pearson Feature Selection and Multi-Model Fusion
    Dai, Zhou
    Wang, Gang
    Bian, Ruien
    Deng, Chaozhi
    FRONTIERS IN ENERGY RESEARCH, 2022, 10