Experimental investigation on magnetorheological shear thickening polishing characteristics for SiC substrate

被引:2
|
作者
Ma, Xifeng [1 ]
Tian, Yebing [1 ,2 ]
Qian, Cheng [1 ]
Ma, Zhen [1 ]
Ahmad, Shadab [1 ]
Li, Ling [3 ]
Fan, Zenghua [1 ]
机构
[1] Shandong Univ Technol, Sch Mech Engn, 266 Xincun West Rd, Zibo 255049, Shandong, Peoples R China
[2] Shandong Univ Technol, Inst Adv Mfg, Zibo 255049, Peoples R China
[3] Shandong Ind Ceram Res & Design Inst Co Ltd, Zibo 255000, Peoples R China
基金
中国国家自然科学基金;
关键词
Silicon carbide; Magnetorheological shear thickening polishing; Magnetic field simulation; Surface roughness; SILICON-CARBIDE; MECHANICAL-PROPERTIES; SURFACE; WET;
D O I
10.1016/j.ceramint.2024.07.392
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Silicon carbide (SiC) substrates are widely used in semiconductor and photoelectric applications due to excellent electrical and chemical properties. However, due to its inherent hard-brittle properties and chemical inertness, traditional polishing processes are facing great challenges to obtain excellent surface and subsurface quality for the SiC substrates. In this work, a novel polishing process i.e. magnetorheological shear thickening polishing (MRSTP) was proposed to explore the feasibility for the polishing of the SiC substrates. The MRSTP experiments were conducted using multiple magnetic-pole-coupled tools. The magnetic field characteristics of the polishing area were investigated via finite element simulation and actual measurements. The magnetic-pole-coupled tool was capable of generating high magnetic induction strength in the polishing area. The MRSTP medium was designed and prepared. The media were formed magnetic brushes by the excited magnetic field. The MRSTP experiments were conducted to investigate the effects of processing parameters on the polished surface roughness. The optimum process parameters were determined as the spindle rotational speed of 700 rpm, the feed rate of 600 mm/min, the work gap of 0.5 mm and MRSTP media CIPs particle size of 100 mu m. The surface roughness of the workpieces was improved from initial 1.414 mu m to 27.6 nm. It is verified that the MRSTP is the feasible ultraprecision polishing process for the SiC substrates.
引用
收藏
页码:40069 / 40078
页数:10
相关论文
共 50 条
  • [1] Modeling and simulation of material removal characteristics in magnetorheological shear thickening polishing
    Zhen Ma
    Yebing Tian
    Cheng Qian
    Shadab Ahmad
    Zenghua Fan
    Zhiguang Sun
    The International Journal of Advanced Manufacturing Technology, 2023, 128 : 2319 - 2331
  • [2] Modeling and simulation of material removal characteristics in magnetorheological shear thickening polishing
    Ma, Zhen
    Tian, Yebing
    Qian, Cheng
    Ahmad, Shadab
    Fan, Zenghua
    Sun, Zhiguang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 128 (5-6): : 2319 - 2331
  • [3] Material Removal Characteristics and Predictive Models for Magnetorheological Shear Thickening Polishing Method
    Tian, Yebing
    Ma, Zhen
    Qian, Cheng
    Ahmad, S.
    Ma, Xifeng
    Yuan, Xiangyu
    Fan, Zenghua
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2024, 60 (23): : 365 - 376
  • [4] Theoretical and experimental investigation on magnetorheological shear thickening polishing force using multi-pole coupling magnetic field
    Qian, Cheng
    Tian, Yebing
    Ahmad, Shadab
    Ma, Zhen
    Li, Ling
    Fan, Zenghua
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2024, 328
  • [5] Simulation and modeling of magnetorheological shear thickening polishing processes for slender tube
    Li, Jiyong
    Fan, Zenghua
    Yang, Zihao
    Tian, Yebing
    Gao, Jun
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 25 : 480 - 496
  • [6] Research on the rheological characteristic of magnetorheological shear thickening fluid for polishing process
    Ren, Yinghui
    Yang, Sanfeng
    Huang, Xiangming
    Ming, Yang
    Li, Wei
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 117 (1-2): : 413 - 423
  • [7] Research on the rheological characteristic of magnetorheological shear thickening fluid for polishing process
    Yinghui Ren
    Sanfeng Yang
    Xiangming Huang
    Yang Ming
    Wei Li
    The International Journal of Advanced Manufacturing Technology, 2021, 117 : 413 - 423
  • [8] Shear Thickening Polishing of Black Lithium Tantalite Substrate
    Lyu, B. H.
    Shao, Q.
    Hang, W.
    Chen, S. H.
    He, Q. K.
    Yuan, J. L.
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2020, 21 (09) : 1663 - 1675
  • [9] Shear Thickening Polishing of Black Lithium Tantalite Substrate
    B. H. Lyu
    Q. Shao
    W. Hang
    S. H. Chen
    Q. K. He
    J. L. Yuan
    International Journal of Precision Engineering and Manufacturing, 2020, 21 : 1663 - 1675
  • [10] Theoretical and Experimental Investigation of Material Removal Rate in Magnetorheological Shear Thickening Polishing of Ti-6Al-4V Alloy
    Tian, Yebing
    Ma, Zhen
    Ahmad, Shadab
    Qian, Cheng
    Ma, Xifeng
    Yuan, Xiangyu
    Fan, Zenghua
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (03):