Material removal mechanisms in ultra-high-speed scratching of Ti6Al4V alloy by selective laser melting

被引:3
|
作者
Jiang, Qinghong [1 ,2 ,3 ]
Li, Shuai [1 ]
Liu, Hao [1 ]
Fu, Mingwang [2 ]
Zhang, Bi [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
[2] Hong Kong Polytech Univ, Res Inst Adv Mfg, Dept Mech Engn, Hung Hom, Hong Kong, Peoples R China
[3] Mindray Biomed Elect Co Ltd, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
Titanium alloy; Selective laser melting; Single-point scratching; Ultra-high-speed machining; Material removal mechanism; OF-THE-ART; PLASTIC-DEFORMATION; SURFACE INTEGRITY; TITANIUM-ALLOY; TI-6AL-4V; EVOLUTION; TRANSFORMATION; ATTENUATION; DYNAMICS; BEHAVIOR;
D O I
10.1016/j.jmapro.2024.07.145
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Selective laser melting (SLM) offers advanced solutions for manufacturing high added value titanium alloy (Tialloy) components, owing to its capability to facilitate rapid, integrated, and customisable manufacturing of complex parts. However, surface machining is imperative for SLM-manufactured (SLM-ed) components due to the poor surface integrity. SLM-ed Ti-alloy is a typical difficult-to-machine material, conventional machining methods are difficult to realize high-efficiency and high-quality machining of SLM-ed Ti-alloy. Ultra-high-speed machining (UHSM) exhibits immense potential for enhancing machining efficiency and quality. However, the material removal mechanism of SLM-ed Ti-alloy in ultra-high-speed regions remains unclear. This study develops a single-point scratching (SPS) system to investigate material removal mechanisms across speeds ranging from 20 m/s to 220 m/s. Systematic characterisations regarding surface creation, subsurface microstructure, and chip formation were conducted using FIB and STEM techniques. The results revealed that the pile-up effect was significantly suppressed at higher speeds. The machining-deformed zone (MDZ) exhibited a "skin effect," with plastic deformation confined to a superficial layer with a depth within 1 mu m at 220 m/s. The deformation mechanism transitioned from dislocation-mediated deformation (DMD) to twin-mediated deformation (TMD) under extremely high strain rate conditions, leading to the formation of ultrafine grains with embedded twins (UGENTs) structure. Additionally, the chip removal mode progressively shift from continuous chips to segmented chips, and eventually to fragmented chips with increased scratching speed. This study provides an insight into the material removal and deformation process of SLM-ed Ti-alloy under low to ultra-high-speed deformations, and lays the theoretical basis for the high-efficiency and high-quality machining of difficult-to-machining materials.
引用
收藏
页码:645 / 659
页数:15
相关论文
共 50 条
  • [1] Ultra-high specific strength Ti6Al4V alloy lattice material manufactured via selective laser melting
    Yang, Xin
    Ma, Wenjun
    Zhang, Zhaoyang
    Liu, Shifeng
    Tang, Huiping
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 840
  • [2] Anisotropy of Ti6Al4V Alloy Fabricated by Selective Laser Melting
    Diao W.
    Du L.
    Wang Y.
    Zhou H.
    Sun J.
    Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research, 2022, 36 (03): : 231 - 240
  • [3] Anisotropic Study of Ti6Al4V Alloy Formed by Selective Laser Melting
    Weidong Huang
    Xiayu Chen
    Xu Huang
    Hui Wang
    Yitao Zhu
    JOM, 2021, 73 : 3804 - 3811
  • [4] Anisotropic Study of Ti6Al4V Alloy Formed by Selective Laser Melting
    Huang, Weidong
    Chen, Xiayu
    Huang, Xu
    Wang, Hui
    Zhu, Yitao
    JOM, 2021, 73 (12) : 3804 - 3811
  • [5] Improvement of tensile properties of Ti6Al4V alloy by selective laser melting
    Xu, Yang-Li
    Zhang, Dong-Yun
    Guo, Yan-Wu
    Hu, Song-Tao
    Chen, Run-Ping
    Surface Technology, 2019, 48 (05): : 108 - 115
  • [6] Material characterization of Ti6Al4V alloy additively manufactured using selective laser melting technique
    Shah, Syed Waqas Ali
    Ali, Sadaqat
    Ullah, Himayat
    Saad, Muhammad
    Mubashar, Aamir
    Din, Emad Ud
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 1756 - 1763
  • [7] Performance of High Layer Thickness in Selective Laser Melting of Ti6Al4V
    Shi, Xuezhi
    Ma, Shuyuan
    Liu, Changmeng
    Chen, Cheng
    Wu, Qianru
    Chen, Xianping
    Lu, Jiping
    MATERIALS, 2016, 9 (12)
  • [8] Laser Polishing of Ti6Al4V Fabricated by Selective Laser Melting
    Liang, Chunyong
    Hu, Yazhou
    Liu, Ning
    Zou, Xianrui
    Wang, Hongshui
    Zhang, Xinping
    Fu, Yulan
    Hu, Jingyun
    METALS, 2020, 10 (02)
  • [9] SELECTIVE LASER MELTING OF DENSITY GRADED TI6AL4V
    Low, K. H.
    Sun, C. N.
    Leong, K. F.
    Liu, Z. H.
    Zhang, D. Q.
    Wei, J.
    PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING, 2014, : 72 - +
  • [10] Corrosion Performances of Selective Laser Melting Ti6Al4V Alloy in Different Solutions
    Chen, Xuedan
    Liao, Qilong
    Gong, Min
    Fu, Qingshan
    METALS, 2023, 13 (02)