共 32 条
A channel-homogenized micro gas chromatography column for light alkane separation with uniform HKUST-1 stationary phase
被引:0
|作者:
Ma, Shaojie
[1
,2
]
Zhu, Yuchen
[1
,2
]
Chen, Boxin
[1
,2
]
Zhao, Bin
[1
]
Feng, Fei
[1
,2
]
机构:
[1] Chinese Acad Sci, State Key Lab Transducer Technol, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Gas chromatography columns;
Homogenization of microchannel;
Light alkane separation;
ADSORPTION;
DESIGN;
D O I:
10.1016/j.aca.2024.342619
中图分类号:
O65 [分析化学];
学科分类号:
070302 ;
081704 ;
摘要:
Background: The micro gas chromatography column (mu GCC) is one of the key components of the miniaturized gas chromatography system. However, light alkanes are difficult to be separated by a micro gas chromatography column, especially for methane and ethane, because the length of mu GCC is limited by the area of a silicon substrate. More importantly, the heterogeneous microchannel surface formed by silicon glass bonding causes uneven stationary phase coating and the forces between the untreated microchannel surfaces and the stationary phase materials are weak, which will prevent the improvement of separation performance. Results: In this paper, a micro gas chromatography column (mu GCC) with uniform HKUST-1 stationary phase is reported. Significantly, an alumina film prepared by the atomic layer deposition (ALD) technique is used to homogenize the heterogeneous microchannels. The alumina is a hydrophilic material and the alumina made by the ALD technique is uniform. The forces between hydrophilic alumina film and HKUST-1 are strong, which can greatly improve the coating uniformity of the hydrophilic stationary phase HKUST-1. The test results show that the mu GCC could baseline separate the light alkane mixtures (CH4, 4 , C2H6, 2 H 6 , C3H8, 3 H 8 , and C4H10) 4 H 10 ) at the high testing temperature of 120 degrees C. The maximum resolution of the difficult-separated methane and ethane reached 19.2, which is 108 % higher than the mu GCC using the same stationary phase without homogenizing the microchannel inner surface. Significance: The mu GCC uses ALD alumina film to homogenize the microchannel inner surface; meanwhile, hydrophilic ALD alumina has a strong electrostatic attraction with the hydrophilic stationary phase HKUST-1. Homogeneous microchannel surface and strong electrostatic attraction are favorable to obtain uniform stationary phase which greatly improves the separation performance, resulting in a large resolution for methane and ethane. The mu GCC has broad application prospects in light alkane separation.
引用
收藏
页数:6
相关论文