Response Mechanism of Extracellular Polymeric Substances Synthesized by Alternaria sp. on Drought Stress in Alfalfa (Medicago sativa L.)

被引:3
|
作者
Bi, Yin-Li [1 ,2 ,3 ]
Tan, Hai [1 ,2 ]
Zhang, Shi-Shuang [1 ,2 ]
Kang, Jia-Peng [1 ,2 ]
机构
[1] Xian Univ Sci & Technol, Inst Ecol Environm Restorat Mine Areas West China, Xian 710054, Peoples R China
[2] Xian Univ Sci & Technol, Coll Geol & Environm, Xian 710054, Peoples R China
[3] China Univ Min & Technol Beijing, State Key Lab Coal Resources & Safe Min, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
extracellular polymeric substances; Alternaria sp; alfalfa; stem metabolism; leaf metabolism; EXOPOLYSACCHARIDE PRODUCTION; PLANT; GROWTH; RICE; COLONIZATION; SEEDLINGS; ACIDS;
D O I
10.1021/acs.jafc.4c04009
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
This study investigates how extracellular polymeric substances (EPS) synthesized by dark septate endophytic (DSE) improve alfalfa's drought resistance. Drought stress was simulated in hydroponic culture, and roots were treated with different EPS concentrations to determine their effects on drought tolerance and applicable concentrations. Hydroponic solutions with 0.25 and 0.50% EPS concentrations alleviated leaf wilting and increased total plant fresh weight by 35.8 and 57.7%, respectively. SEM shows that EPS attached to the roots and may have served to protect the root system. EPS treatment significantly depressed the MDA contents of the roots, stems, and leaves. Roots responded to drought stress by increasing soluble sugar contents and antioxidant enzyme activities, while mitigating stem and leaf stress by synthesizing lipid compounds, amino acids, and organic acid metabolites. Five metabolites in the stem have been reported to be associated with plant stress tolerance and growth, namely 3-O-methyl 5-O-(2-methyl propyl) (4S)-2,6-dimethyl-4-(2-nitrophenyl)-3,4-dihydropyridine-3,5-dicarboxylate, malic acid, PA (20:1(11Z)/15:0), N-methyl-4,6,7-trihydroxy-1,2,3,4-tetrahydroisoquinoline, and 2-(S-glutathionyl) acetyl glutathione. In summary, EPS treatment induced oxidative stress and altered plant metabolism, and this in turn increased plant antioxidant capacity. The results provide a theoretical basis for the application of EPS in commercial products that increase plant resistance and ecological restoration.
引用
收藏
页码:16812 / 16824
页数:13
相关论文
共 50 条
  • [1] The mechanism of alfalfa (Medicago sativa L.) response to abiotic stress
    Song, Yuguang
    Lv, Jiao
    Ma, Zongqi
    Dong, Wei
    PLANT GROWTH REGULATION, 2019, 89 (03) : 239 - 249
  • [2] The mechanism of alfalfa (Medicago sativa L.) response to abiotic stress
    Yuguang Song
    Jiao Lv
    Zongqi Ma
    Wei Dong
    Plant Growth Regulation, 2019, 89 : 239 - 249
  • [3] Drought Stress and Tolerance Mechanisms in Alfalfa (Medicago sativa L.)
    Tiryaki, Iskender
    KAHRAMANMARAS SUTCU IMAM UNIVERSITY JOURNAL OF NATURAL SCIENCES, 2016, 19 (03): : 296 - 304
  • [4] DROUGHT STRESS RESPONSES OF ALFALFA (MEDICAGO SATIVA L.) BREEDING POPULATIONS
    Tucak, Marijana
    Popovic, Svetislav
    Cupic, Tihomir
    Krizmanic, Goran
    ROMANIAN AGRICULTURAL RESEARCH, 2017, 34 : 25 - 30
  • [5] Morphological and biochemical response to osmotic stress in alfalfa (Medicago sativa L.)
    Safarnejad, A.
    PAKISTAN JOURNAL OF BOTANY, 2008, 40 (02) : 735 - 746
  • [6] Evaluation of Alfalfa (Medicago sativa L.) Populations' Response to Salinity Stress
    Cornacchione, Monica V.
    Suarez, Donald L.
    CROP SCIENCE, 2017, 57 (01) : 137 - 150
  • [7] Drought stress memory enhances the tolerance of alfalfa Medicago sativa L. in response to a subsequent drought: A physiological and omics perspective
    Bai, Zhuoan
    Yang, Xueqing
    Zi, Na
    Ren, Weibo
    Yin, Jinjin
    Yuan, Ting
    Wang, Min
    Yuan, Feng
    Liu, Yaling
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2025, 230
  • [8] Mechanism of action of microRNA166 on nitric oxide in alfalfa (Medicago sativa L.) under drought stress
    Wei, Bochuang
    Wang, Yizhen
    Ruan, Qian
    Zhu, Xiaolin
    Wang, Xian
    Wang, Tianjie
    Zhao, Ying
    Wei, Xiaohong
    BMC GENOMICS, 2024, 25 (01)
  • [9] Mechanism of action of microRNA166 on nitric oxide in alfalfa (Medicago sativa L.) under drought stress
    Bochuang Wei
    Yizhen Wang
    Qian Ruan
    Xiaolin Zhu
    Xian Wang
    Tianjie Wang
    Ying Zhao
    Xiaohong Wei
    BMC Genomics, 25
  • [10] BORON DEFICIENCY STRESS IN MEDICAGO SATIVA L.(ALFALFA)
    Cetin, E.
    ACTA PHYSIOLOGIAE PLANTARUM, 2004, 26 (03) : 241 - 242