Materials advancements in solid-state inorganic electrolytes for highly anticipated all solid Li-ion batteries

被引:15
|
作者
Sarfraz, Nafeesa [1 ]
Kanwal, Nosheen [2 ]
Ali, Muzahir [3 ]
Ali, Kashif [4 ]
Hasnain, Ali [5 ]
Ashraf, Muhammad [6 ]
Ayaz, Muhammad [7 ]
Ifthikar, Jerosha [8 ]
Ali, Shahid [9 ]
Hendi, Abdulmajeed [10 ]
Baig, Nadeem [10 ,11 ]
Ehsan, Muhammad Fahad [12 ]
Shah, Syed Shaheen [13 ]
Khan, Rizwan [14 ]
Khan, Ibrahim [1 ,7 ,8 ]
机构
[1] Chung Ang Univ, Dept Chem, 84 Heukseok Ro, Seoul 06974, South Korea
[2] Govt Coll Univ Faisalabad, Dept Phys, Faisalabad 38000, Pakistan
[3] Univ Engn & Technol, Mech Engn Dept, Taxila, Pakistan
[4] Chung Ang Univ, Dept Chem, 84 Heukseok Ro, Seoul 06974, South Korea
[5] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Taoyuan 32003, Taiwan
[6] Univ Coll Dublin UCD, Coll Sci, Sch Phys, Dublin, Ireland
[7] Univ Swat, Inst Chem Sci, Swat 19130, Khyber Pakhtunk, Pakistan
[8] Univ Nottingham Ningbo China, Nottingham Ningbo China Beacons Excellence Res & I, Green Chem & Energy, Ningbo 315100, Peoples R China
[9] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Hydrogen Technol & Carbo, Dhahran 31261, Saudi Arabia
[10] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Hydrogen Technol & Carbo, Phys Dept, Dhahran 31261, Saudi Arabia
[11] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Membranes & Water Secur, Dhahran 31261, Saudi Arabia
[12] Northeastern Univ, Dept Civil & Environm Engn, Boston, MA 02115 USA
[13] Kyoto Univ, Grad Sch Engn, Dept Mat Chem, Nishikyo Ku, Kyoto 6158520, Japan
[14] Kwangwoon Univ, Dept Elect Engn, Seoul 01897, South Korea
关键词
Solid inorganic electrolytes; All solid state Li batteries; Charge transfer mechanism; Energy storage devices; Li-ions transport mechanism; Safety and sustainibility; ATOMIC LAYER DEPOSITION; LITHIUM-ION; POLYMER ELECTROLYTES; COMPOSITE ELECTROLYTES; CERAMIC ELECTROLYTES; TRANSPORT-PROPERTIES; CATHODE MATERIALS; CONDUCTIVITY; GLASS; LIQUID;
D O I
10.1016/j.ensm.2024.103619
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The superior characteristics exhibited by all-solid-state Li-ion batteries (ASSLIBs) have solidified their status as an excellent alternative in the realm of battery development. With noteworthy improvements in safety, good energy density, and prolonged lifespan, ASSLIBs have emerged as a compelling substitute for conventional liquid electrolyte batteries. Solid inorganic electrolytes (SIEs) having high ionic conductivity, a broad electrochemical stability window, and compatibility with Lithium (Li) metal anodes, have become appealing ingredients for ASSLIBs. SIEs present a distinctive prospect for attaining good energy density and faster charging capabilities while concurrently mitigating the safety risks linked to combustible liquid electrolytes. This article has summarized the recent advances in SIEs for ASSLIBs and their useful invasions in this field. The review started with a discussion of the fundamental properties and mechanisms of SIEs. Then, the current progress in developing various kinds of SIEs is comprehensively discussed with relevant case studies. The expected Li-ions transport mechanisms are briefly analyzed in each type with specific examples. The inclusive overview provided in this article is highly anticipated to draw interest from a wide range of disciplines, specifically electrolyte material designing for energy storage devices.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Designing inorganic electrolytes for solid-state Li-ion batteries: A perspectine of LGPS and garnet
    Liang, Feng
    Sun, Yulong
    Yuan, Yifei
    Huang, Jian
    Hou, Minjie
    Lu, Jun
    MATERIALS TODAY, 2021, 50 : 418 - 441
  • [2] Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries
    Meesala, Yedukondalu
    Jena, Anirudha
    Chang, Ho
    Liu, Ru-Shi
    ACS ENERGY LETTERS, 2017, 2 (12): : 2734 - 2751
  • [3] Ultrathin All-Inorganic Halide Solid-State Electrolyte Membranes for All-Solid-State Li-Ion Batteries
    Wang, Shuhao
    Liao, Yaqi
    Li, Shiya
    Cui, Can
    Liang, Jianing
    Du, Gaofeng
    Tong, Zhaoming
    Yuan, Lixia
    Zhai, Tianyou
    Li, Huiqiao
    ADVANCED ENERGY MATERIALS, 2024, 14 (06)
  • [4] Sur-/interfacial regulation in all-solid-state rechargeable Li-ion batteries based on inorganic solid-state electrolytes: advances and perspectives
    Liang, Longwei
    Sun, Xuan
    Zhang, Jinyang
    Sun, Jinfeng
    Hou, Linrui
    Liu, Yang
    Yuan, Changzhou
    MATERIALS HORIZONS, 2019, 6 (05) : 871 - 910
  • [5] Synthesis and characterization of argyrodite solid electrolytes for all-solid-state Li-ion batteries
    Zhang, Zhixia
    Zhang, Long
    Liu, Yanyan
    Yu, Chuang
    Yan, Xinlin
    Xu, Bo
    Wang, Li-min
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 747 : 227 - 235
  • [6] On the design of solid-state Li-ion batteries
    Sokseiha Muy
    Nicola Marzari
    Nature Computational Science, 2021, 1 : 179 - 180
  • [7] On the design of solid-state Li-ion batteries
    Muy, Sokseiha
    Marzari, Nicola
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (03): : 179 - 180
  • [8] Synergized Tricomponent All-Inorganics Solid Electrolyte for Highly Stable Solid-State Li-Ion Batteries
    Xu, Guixiang
    Zhang, Xin
    Sun, Shuyang
    Zhou, Yangfan
    Liu, Yongfeng
    Yang, Hangwang
    Huang, Zhenguo
    Fang, Fang
    Sun, Wenping
    Hong, Zijiang
    Gao, Mingxia
    Pan, Hongge
    ADVANCED SCIENCE, 2023, 10 (25)
  • [9] All-solid-state Li-ion batteries
    不详
    CHEMISTRY & INDUSTRY, 2024, 88 (12)
  • [10] Solid electrolytes for solid-state Li/Na-metal batteries: inorganic, composite and polymeric materials
    Song, Shufeng
    Hu, Ning
    Lu, Li
    CHEMICAL COMMUNICATIONS, 2022, 58 (86) : 12035 - 12045