Synthetic data in medicine: generation, evaluation and limits

被引:0
|
作者
Benani, Alaedine [1 ,2 ]
Vibert, Julien [3 ]
Demuth, Stanislas [4 ,5 ]
机构
[1] Univ Paris Cite, Hop Europeen Georges Pompidou HEGP, AP HP, Serv Med Vasc, Paris, France
[2] Zoi, Paris, France
[3] Gustave Roussy, Dept Innovat Therapeut & Essais Prec DITEP, Inserm, U981, Paris, France
[4] Nantes Univ, CR2TI Ctr Rech Transplantat & Immunol Translat, Inserm, U1064, Nantes, France
[5] Ctr Hosp Strasbourg, Ctr Invest Clin, Inserm, CIC 1434, Strasbourg, France
来源
M S-MEDECINE SCIENCES | 2024年 / 40卷 / 8-9期
关键词
D O I
10.1051/medsci/2024091
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Recent technological advances in data science hold great promise in medicine. Large-sized high-quality datasets are essential but often difficult to obtain due to privacy, cost, and practical challenges. Here, we discuss synthetic data's generation, evaluation, and regulation, highlighting its current applications and limits.
引用
收藏
页码:661 / 664
页数:4
相关论文
共 50 条
  • [1] Generation and evaluation of synthetic patient data
    Goncalves, Andre
    Ray, Priyadip
    Soper, Braden
    Stevens, Jennifer
    Coyle, Linda
    Sales, Ana Paula
    BMC MEDICAL RESEARCH METHODOLOGY, 2020, 20 (01)
  • [2] Generation and evaluation of synthetic patient data
    Andre Goncalves
    Priyadip Ray
    Braden Soper
    Jennifer Stevens
    Linda Coyle
    Ana Paula Sales
    BMC Medical Research Methodology, 20
  • [3] Generation and evaluation of medical synthetic data
    Goncalves, Andre R.
    Ray, Priyadip
    Soper, Braden
    Myneni, Madhumita
    Stevens, Jennifer L.
    Coyle, Linda M.
    Sales, Ana Paula
    CANCER RESEARCH, 2019, 79 (13)
  • [4] An Evaluation Framework for Synthetic Data Generation Models
    Livieris, I. E.
    Alimpertis, N.
    Domalis, G.
    Tsakalidis, D.
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, PT III, AIAI 2024, 2024, 713 : 320 - 335
  • [5] Generation and evaluation of privacy preserving synthetic health data
    Yale, Andrew
    Dash, Saloni
    Dutta, Ritik
    Guyon, Isabelle
    Pavao, Adrien
    Bennett, Kristin P.
    NEUROCOMPUTING, 2020, 416 : 244 - 255
  • [6] Survey on Synthetic Data Generation, Evaluation Methods and GANs
    Figueira, Alvaro
    Vaz, Bruno
    MATHEMATICS, 2022, 10 (15)
  • [7] Empirical Evaluation on Synthetic Data Generation with Generative Adversarial Network
    Lu, Pei-Hsuan
    Wang, Pang-Chieh
    Yu, Chia-Mu
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, MINING AND SEMANTICS (WIMS 2019), 2019,
  • [8] Evaluation of synthetic data generation for intelligent climate control in greenhouses
    Morales-Garcia, Juan
    Bueno-Crespo, Andres
    Terroso-Saenz, Fernando
    Arcas-Tunez, Francisco
    Martinez-Espana, Raquel
    Cecilia, Jose M.
    APPLIED INTELLIGENCE, 2023, 53 (21) : 24765 - 24781
  • [9] Evaluation of synthetic data generation for intelligent climate control in greenhouses
    Juan Morales-García
    Andrés Bueno-Crespo
    Fernando Terroso-Sáenz
    Francisco Arcas-Túnez
    Raquel Martínez-España
    José M. Cecilia
    Applied Intelligence, 2023, 53 : 24765 - 24781
  • [10] Synthetic Data Generation and Evaluation Techniques for Classifiers in Data Starved Medical Applications
    Bae, Wan D.
    Alkobaisi, Shayma
    Horak, Matthew
    Bankar, Siddheshwari
    Bhuvaji, Sartaj
    Kim, Sungroul
    Park, Choon-Sik
    IEEE ACCESS, 2025, 13 : 16584 - 16602