Experimental Investigation on Thermal Runaway of Lithium-Ion Batteries under Low Pressure and Low Temperature

被引:2
|
作者
Meng, Di [1 ]
Weng, Jingwen [1 ]
Wang, Jian [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Peoples R China
来源
BATTERIES-BASEL | 2024年 / 10卷 / 07期
关键词
lithium-ion battery; low pressure; low temperature; thermal runaway; thermal hazards; FIRE; COMBUSTION; BEHAVIORS; STABILITY; HAZARDS; CHARGE;
D O I
10.3390/batteries10070243
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Understanding the thermal runaway mechanism of lithium-ion batteries under low pressure and low temperature is paramount for their application and transportation in the aviation industry. This work investigated the coupling effects of ambient pressure (100 kPa, 70 kPa, 40 kPa) and ambient temperature (-15 degrees C, 0 degrees C, 25 degrees C) on thermal behaviors in an altitude temperature chamber. The experimental results indicate that lowering ambient pressure and temperature could attenuate the thermal runaway intensity, which is mainly attributable to the reduction in oxygen concentration and the increase in heat loss. Such a dual effect leads to the maximum temperature decreasing from 811.9 degrees C to 667.5 degrees C, and the maximum temperature rate declines up to 2.6 times. Correspondingly, the whole thermal runaway process is deferred, the total time increases from 370 s to 503 s, and the time interval, Delta t, from safety venting gains by 32.3% as the ambient pressure and temperature decrease. This work delivers an in-depth understanding of the thermal characteristics under low pressure and low temperature and provides meritorious guidance for the safety of cell transportation in aviation.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Study on the Thermal Runaway and Its Propagation of Lithium-Ion Batteries Under Low Pressure
    Huaibin Wang
    Zhiming Du
    Ling Liu
    Zelin Zhang
    Jinyuan Hao
    Qinzheng Wang
    Shuang Wang
    Fire Technology, 2020, 56 : 2427 - 2440
  • [2] Study on the Thermal Runaway and Its Propagation of Lithium-Ion Batteries Under Low Pressure
    Wang, Huaibin
    Du, Zhiming
    Liu, Ling
    Zhang, Zelin
    Hao, Jinyuan
    Wang, Qinzheng
    Wang, Shuang
    FIRE TECHNOLOGY, 2020, 56 (06) : 2427 - 2440
  • [3] Thermal runaway behavior of lithium-ion batteries in different charging states under low pressure
    Xie, Song
    Sun, Jian
    Chen, Xiantao
    He, Yuanhua
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (04) : 5795 - 5805
  • [4] Numerical modeling of thermal runaway for low temperature cycling lithium-ion batteries
    Zhao, Luyao
    Zheng, Minxue
    Zhang, Junming
    Liu, Hong
    Li, Wei
    Chen, Mingyi
    JOURNAL OF ENERGY STORAGE, 2023, 63
  • [5] Investigation on Thermal Runaway Hazards of Cylindrical and Pouch Lithium-Ion Batteries under Low Pressure of Cruise Altitude for Civil Aircraft
    Sun, Qiang
    Liu, Hangxin
    Wang, Zhi
    Meng, Yawei
    Xu, Chun
    Wen, Yanxing
    Wu, Qiyao
    BATTERIES-BASEL, 2024, 10 (09):
  • [6] New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries
    Mandal, Braja K.
    Padhi, Akshaya K.
    Shi, Zhong
    Chakraborty, Sudipto
    Filler, Robert
    JOURNAL OF POWER SOURCES, 2006, 162 (01) : 690 - 695
  • [7] Experimental investigation on the effect of ambient pressure on thermal runaway and fire behaviors of lithium-ion batteries
    Chen, Mingyi
    Liu, Jiahao
    Ouyang, Dongxu
    Wang, Jian
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (09) : 4898 - 4911
  • [8] Effect of Charging/Discharging Rate on the Thermal Runaway Characteristics of Lithium-Ion Batteries in Low Pressure
    Xie, Song
    Ren, Lixiang
    Gong, Yize
    Li, Minghao
    Chen, Xiantao
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (14)
  • [9] Experimental Investigation of Lithium-Ion Batteries Thermal Runaway Propagation Consequences under Different Triggering Modes
    Yang, Juan
    Liu, Wenhao
    Zhao, Haoyu
    Zhang, Qingsong
    AEROSPACE, 2024, 11 (06)
  • [10] The investigation of thermal runaway propagation of lithium-ion batteries under different vertical distances
    Tao, Changfa
    Li, Guangyu
    Zhao, Jianbo
    Chen, Guang
    Wang, Zhigang
    Qian, Yejian
    Cheng, Xiaozhang
    Liu, Xiaoping
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 142 (04) : 1523 - 1532