Fully-Discrete Lyapunov Consistent Discretizations for Parabolic Reaction-Diffusion Equations with r Species
被引:0
|
作者:
论文数: 引用数:
h-index:
机构:
Al Jahdali, Rasha
[1
]
Fernandez, David C. Del Rey
论文数: 0引用数: 0
h-index: 0
机构:
Univ Waterloo, Dept Appl Math, Waterloo, ON, CanadaKing Abdullah Univ Sci & Technol KAUST, Extreme Comp Res Ctr ECRC, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
Fernandez, David C. Del Rey
[2
]
Dalcin, Lisandro
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol KAUST, Extreme Comp Res Ctr ECRC, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol KAUST, Extreme Comp Res Ctr ECRC, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
Dalcin, Lisandro
[1
]
Sayyari, Mohammed
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol KAUST, Extreme Comp Res Ctr ECRC, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol KAUST, Extreme Comp Res Ctr ECRC, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
Sayyari, Mohammed
[1
]
Markowich, Peter
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol KAUST, Extreme Comp Res Ctr ECRC, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol KAUST, Extreme Comp Res Ctr ECRC, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
Markowich, Peter
[1
]
Parsani, Matteo
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol KAUST, Extreme Comp Res Ctr ECRC, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div PSE, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol KAUST, Extreme Comp Res Ctr ECRC, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
Parsani, Matteo
[1
,3
]
机构:
[1] King Abdullah Univ Sci & Technol KAUST, Extreme Comp Res Ctr ECRC, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON, Canada
[3] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div PSE, Thuwal 239556900, Saudi Arabia
Reaction-diffusion equations model various biological, physical, sociological, and environmental phenomena. Often, numerical simulations are used to understand and discover the dynamics of such systems. Following the extension of the nonlinear Lyapunov theory applied to some class of reaction-diffusion partial differential equations (PDEs), we develop the first fully discrete Lyapunov discretizations that are consistent with the stability properties of the continuous parabolic reaction-diffusion models. The proposed framework provides a systematic procedure to develop fully discrete schemes of arbitrary order in space and time for solving a broad class of equations equipped with a Lyapunov functional. The new schemes are applied to solve systems of PDEs, which arise in epidemiology and oncolytic M1 virotherapy. The new computational framework provides physically consistent and accurate results without exhibiting scheme-dependent instabilities and converging to unphysical solutions. The proposed approach represents a capstone for developing efficient, robust, and predictive technologies for simulating complex phenomena.