Thermal hysteresis in wettability and the Leidenfrost phenomenon

被引:0
|
作者
Kita, Yutaku [1 ,2 ]
Kida, Kensuke [3 ]
Ariyoshi, Takaaki [3 ]
Hidaka, Sumitomo [2 ]
Kohno, Masamichi [2 ,3 ]
Takata, Yasuyuki [2 ,4 ]
机构
[1] Kings Coll London, Dept Engn, London WC2R 2LS, England
[2] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI ICNER, 744 Motooka,Nishi Ku, Fukuoka 8190395, Japan
[3] Kyushu Univ, Dept Mech Engn, 744 Motooka,Nishi Ku, Fukuoka 8190395, Japan
[4] Univ Edinburgh, Sch Engn, Kings Bldg, Edinburgh EH9 3FB, Scotland
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 03期
基金
日本学术振兴会;
关键词
EVAPORATION; WATER; DROPLET; SURFACE; POINT; TEMPERATURE; GASES;
D O I
10.1103/PhysRevResearch.6.033287
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Leidenfrost temperature (T-L), at which the liquid drop lifetime peaks on a superheated surface, is believed to be wettability dependent. Here, we show that the wettability effect on T-L is subject to the history of the surface temperature. Observing a water drop evaporating on a polished stainless-steel surface heated from 100 to 400 degrees C in argon gas, we find T(L )265 degrees C. We then repeat the experiment along decreasing temperature and find a TL L increase by 10 K, i.e., T-L 275 degrees C. This thermal hysteresis is due to a reduced contact angle during heating. Once hydrophilized, the hysteresis disappears until the contact angle recovers. Similar observations are made in the air where oxidation is possible.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] LEIDENFROST PHENOMENON
    CURZON, FL
    AMERICAN JOURNAL OF PHYSICS, 1978, 46 (08) : 825 - 828
  • [2] THEORY OF THE LEIDENFROST PHENOMENON
    BUEVICH, YA
    MANKEVICH, VN
    HIGH TEMPERATURE, 1982, 20 (06) : 902 - 909
  • [3] INVERSE LEIDENFROST PHENOMENON
    HALL, RS
    BOARD, SJ
    CLARE, AJ
    DUFFEY, RB
    PLAYLE, TS
    POOLE, DH
    NATURE, 1969, 224 (5216) : 266 - &
  • [4] TRANSPLOSION PHENOMENON AND LEIDENFROST TEMPERATURE FOR MOLTEN COPPER WATER THERMAL INTERACTION
    ZYSZKOWSKI, W
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1976, 19 (06) : 625 - 633
  • [5] THE LEIDENFROST PHENOMENON ON SILICON NANOWIRES
    Auliano, Manuel
    Fernandino, Maria
    Zhang, Peng
    Dorao, Carlos Alberto
    PROCEEDINGS OF THE ASME 14TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS, 2016, 2016,
  • [6] Critical contact angle for triggering dynamic Leidenfrost phenomenon at different surface wettability: A molecular dynamics study
    Huang, Xiaonuo
    Zhou, Leping
    Du, Xiaoze
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 382
  • [7] Leidenfrost phenomenon on conical surfaces
    Hidalgo-Caballero, S.
    Escobar-Ortega, Y.
    Pacheco-Vazquez, F.
    PHYSICAL REVIEW FLUIDS, 2016, 1 (05):
  • [8] FURTHER CONTRIBUTIONS TO THE STUDY OF THE LEIDENFROST PHENOMENON
    BETTA, V
    MAZZEI, P
    NASO, V
    VANOLI, R
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1979, 101 (04): : 612 - 614
  • [9] Asymmetric Wettability of Nanostructures Directs Leidenfrost Droplets
    Agapov, Rebecca L.
    Boreyko, Jonathan B.
    Briggs, Dayrl P.
    Srijanto, Bernadeta R.
    Retterer, Scott T.
    Collier, C. Patrick
    Lavrik, Nickolay V.
    ACS NANO, 2014, 8 (01) : 860 - 867
  • [10] Effect of surface topography and wettability on the Leidenfrost effect
    Zhong, Lieshuang
    Guo, Zhiguang
    NANOSCALE, 2017, 9 (19) : 6219 - 6236