Non-local gravity wave turbulence in presence of condensate

被引:2
|
作者
Korotkevich, Alexander O. [1 ]
Nazarenko, Sergey V. [2 ]
Pan, Yulin [3 ]
Shatah, Jalal [4 ]
机构
[1] Univ New Mexico, Dept Math & Stat, MSC01 1115, Albuquerque, NM 87131 USA
[2] Univ Cote Azur, Inst Phys Nice, CNRS UMR 7010, Parc Valrose, F-06108 Nice, France
[3] Univ Michigan, Dept Naval Architecture & Marine Engn, Ann Arbor, MI 48109 USA
[4] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
关键词
surface gravity waves;
D O I
10.1017/jfm.2024.423
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The k(-23/6) wave action spectrum with an inverse cascade is one of the fundamental Kolmogorov-Zakharov solutions for gravity wave turbulence, which is part of the citation for the Dirac Medal in 2003. Instead of confirming this solution, however, several existing simulations and experiments suggest a spectrum of k(-3) in set-ups corresponding to the inverse cascade. We provide a theoretical explanation for the latter, considering the condensate that naturally forms in finite domains of experiments/simulations. Our new theory hinges on: (1) derivation of a spectral diffusion equation when non-local interactions with the condensate become dominant, for the first time systematically formulated for quartet-interaction systems; and (2) careful analysis of the asymptotics of interaction coefficient with a remarkable cancellation of all leading-order terms.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Non-local MHD turbulence
    Nazarenko, SV
    Newell, AC
    Galtier, S
    PHYSICA D, 2001, 152 : 646 - 652
  • [2] On the non-local geometry of turbulence
    Bermejo-Moreno, Ivan
    Pullin, D. I.
    JOURNAL OF FLUID MECHANICS, 2008, 603 (101-135) : 101 - 135
  • [3] Condensate dynamics with non-local interactions
    Lentz, Erik W.
    Quinn, Thomas R.
    Rosenberg, Leslie J.
    NUCLEAR PHYSICS B, 2020, 952
  • [4] Non-local gravity wormholes
    Capozziello, Salvatore
    Godani, Nisha
    PHYSICS LETTERS B, 2022, 835
  • [5] Non-local gravity wormholes
    Capozziello, Salvatore
    Godani, Nisha
    PHYSICS LETTERS B, 2022, 835
  • [6] Non-local massive gravity
    Modesto, Leonardo
    Tsujikawa, Shinji
    PHYSICS LETTERS B, 2013, 727 (1-3) : 48 - 56
  • [7] MODIFIED NON-LOCAL GRAVITY
    Koshelev, Alexey S.
    ROMANIAN JOURNAL OF PHYSICS, 2012, 57 (5-6): : 894 - 900
  • [8] Local and non-local aspects of quantum gravity
    von Borzeszkowski, HH
    Datta, BK
    de Sabbata, V
    Ronchetti, L
    Treder, HJ
    FOUNDATIONS OF PHYSICS, 2002, 32 (11) : 1701 - 1716
  • [9] Local and Non-Local Aspects of Quantum Gravity
    H.-H. v. Borzeszkowski
    B. K. Datta
    V. de Sabbata
    L. Ronchetti
    H.-J. Treder
    Foundations of Physics, 2002, 32 : 1701 - 1716
  • [10] On bouncing solutions in non-local gravity
    A. S. Koshelev
    S. Yu. Vernov
    Physics of Particles and Nuclei, 2012, 43 : 666 - 668