Fuzzy Influence Maximization in Social Networks

被引:2
|
作者
Zareie, Ahmad [1 ]
Sakellariou, Rizos [1 ]
机构
[1] Univ Manchester, Dept Comp Sci, Oxford Rd, Manchester M13 9PL, England
关键词
Influence maximization; social network analysis; information diffusion; fuzzy set theory; COMPLEX; NODES;
D O I
10.1145/3650179
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Influence maximization is a fundamental problem in social network analysis. This problem refers to the identification of a set of influential users as initial spreaders to maximize the spread of a message in a network. When such a message is spread, some users may be influenced by it. A common assumption of existing work is that the impact of a message is essentially binary: A user is either influenced (activated) or not influenced (non-activated). However, how strongly a user is influenced by a message may play an important role in this user's attempt to influence subsequent users and spread the message further; existing methods may fail to model accurately the spreading process and identify influential users. In this article, we propose a novel approach to model a social network as a fuzzy graph where a fuzzy variable is used to represent the extent to which a user is influenced by a message (user's activation level). By extending a diffusion model to simulate the spreading process in such a fuzzy graph, we conceptually formulate the fuzzy influence maximization problem for which three methods are proposed to identify influential users. Experimental results demonstrate the accuracy of the proposed methods in determining influential users in social networks.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] A fuzzy logic approach to influence maximization in social networks
    Atif, Yacine
    Al-Falahi, Kanna
    Wangchuk, Tshering
    Lindstrom, Birgitta
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 11 (06) : 2435 - 2451
  • [2] A fuzzy logic approach to influence maximization in social networks
    Yacine Atif
    Kanna Al-Falahi
    Tshering Wangchuk
    Birgitta Lindström
    Journal of Ambient Intelligence and Humanized Computing, 2020, 11 : 2435 - 2451
  • [3] A New Fuzzy Propagation Model for Influence Maximization in Social Networks
    Aliahmadipour, Laya
    Valipour, Ezat
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2022, 30 (SUPP02) : 279 - 292
  • [4] Social Influence Maximization in Hypergraph in Social Networks
    Zhu, Jianming
    Zhu, Junlei
    Ghosh, Smita
    Wu, Weili
    Yuan, Jing
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2019, 6 (04): : 801 - 811
  • [5] Influence Maximization in Dynamic Social Networks
    Zhuang, Honglei
    Sun, Yihan
    Tang, Jie
    Zhang, Jialin
    Sun, Xiaoming
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, : 1313 - 1318
  • [6] Personalized Influence Maximization on Social Networks
    Guo, Jing
    Zhang, Peng
    Zhou, Chuan
    Cao, Yanan
    Guo, Li
    PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 199 - 208
  • [7] Influence Maximization in Noncooperative Social Networks
    Yang, Yile
    Li, Victor O. K.
    Xu, Kuang
    2012 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2012, : 2834 - 2839
  • [8] Influence Maximization in Online Social Networks
    Aslay, Cigdem
    Lakshmanan, Laks V. S.
    Lu, Wei
    Xiao, Xiaokui
    WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2018, : 775 - 776
  • [9] Structural Influence Maximization in Social Networks
    Jing, Dong
    Liu, Ting
    2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2019, : 1088 - 1095
  • [10] On Budgeted Influence Maximization in Social Networks
    Huy Nguyen
    Zheng, Rong
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2013, 31 (06) : 1084 - 1094